Switch to: Citations

Add references

You must login to add references.
  1. Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Bohmian Mechanics and Quantum Information.Sheldon Goldstein - 2010 - Foundations of Physics 40 (4):335-355.
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)One World versus Many: the Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation.Adrian Kent - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • De Sitter Space Without Dynamical Quantum Fluctuations.Kimberly K. Boddy, Sean M. Carroll & Jason Pollack - 2016 - Foundations of Physics 46 (6):702-735.
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Implications of the Copernican principle for our future prospects.J. Richard Gott - 1993 - Nature 363:315-319.
    Making only the assumption that you are a random intelligent observer, limits for the total longevity of our species of 0.2 million to 8 million years can be derived at the 95% confidence level. Further consideration indicates that we are unlikely to colonize the Galaxy, and that we are likely to have a higher population than the median for intelligent species.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 1--13.
    Download  
     
    Export citation  
     
    Bookmark   261 citations  
  • (1 other version)A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
    Download  
     
    Export citation  
     
    Bookmark   315 citations  
  • (1 other version)Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The Bohm Interpretation of Quantum Cosmology.Nelson Pinto-Neto - 2005 - Foundations of Physics 35 (4):577-603.
    I make a review on the aplications of the Bohm-de Broglie interpretation of quantum mechanics to quantum cosmology. In the framework of minisuperspaces models, I show how quantum cosmological effects in Bohm’s view can avoid the initial singularity, and isotropize the Universe. In the general case, I enumerate the possible structures of quantum space and time.
    Download  
     
    Export citation  
     
    Bookmark   2 citations