Switch to: References

Add citations

You must login to add citations.
  1. On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Einstein on Locality and Separability.Don Howard - 1985 - Studies in History and Philosophy of Science Part A 16 (3):171.
    Download  
     
    Export citation  
     
    Bookmark   146 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Quantum Humeanism, or: Physicalism without Properties.Michael Esfeld - 2014 - Philosophical Quarterly 64 (256):453-470.
    In recent literature, it has become clear that quantum physics does not refute Humeanism: Lewis’s thesis of Humean supervenience can be literally true even in the light of quantum entanglement. This point has so far been made with respect to Bohm’s quantum theory. Against this background, this paper seeks to achieve the following four results: to generalize the option of quantum Humeanism from Bohmian mechanics to primitive ontology theories in general; to show that this option applies also to classical mechanics; (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • One world, one beable.Craig Callender - 2015 - Synthese 192 (10):3153-3177.
    Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • (1 other version)Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2014 - British Journal for the Philosophy of Science 65 (2):323-352.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Multi-field and Bohm’s theory.Davide Romano - 2020 - Synthese (11):29 June 2020.
    In the recent literature, it has been shown that the wave function in the de Broglie–Bohm theory can be regarded as a new kind of field, i.e., a "multi-field", in three-dimensional space. In this paper, I argue that the natural framework for the multi-field is the original second-order Bohm’s theory. In this context, it is possible: i) to construe the multi-field as a real-valued scalar field; ii) to explain the physical interaction between the multi-field and the Bohmian particles; and iii) (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The Status of our Ordinary Three Dimensions in a Quantum Universe1.Alyssa Ney - 2010 - Noûs 46 (3):525-560.
    There are now several, realist versions of quantum mechanics on offer. On their most straightforward, ontological interpretation, these theories require the existence of an object, the wavefunction, which inhabits an extremely high-dimensional space known as configuration space. This raises the question of how the ordinary three-dimensional space of our acquaintance fits into the ontology of quantum mechanics. Recently, two strategies to address this question have emerged. First, Tim Maudlin, Valia Allori, and her collaborators argue that what I have just called (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann, Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Typicality and Notions of Probability in Physics.Sheldon Goldstein - 2012 - In Yemima Ben-Menahem & Meir Hemmo, Probability in Physics. Springer. pp. 59--71.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Quantum propensities.Mauricio Suárez - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):418-438.
    This paper reviews four attempts throughout the history of quantum mechanics to explicitly employ dispositional notions in order to solve the quantum paradoxes, namely: Margenau's latencies, Heisenberg's potentialities, Maxwell's propensitons, and the recent selective propensities interpretation of quantum mechanics. Difficulties and challenges are raised for all of them, and it is concluded that the selective propensities approach nicely encompasses the virtues of its predecessors. Finally, some strategies are discussed for reading similar dispositional notions into two other well-known interpretations of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):415-439.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • GRW as an ontology of dispositions.Mauro Dorato & Michael Esfeld - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):41-49.
    The paper argues that the formulation of quantum mechanics proposed by Ghirardi, Rimini and Weber (GRW) is a serious candidate for being a fundamental physical theory and explores its ontological commitments from this perspective. In particular, we propose to conceive of spatial superpositions of non-massless microsystems as dispositions or powers, more precisely propensities, to generate spontaneous localizations. We set out five reasons for this view, namely that (1) it provides for a clear sense in which quantum systems in entangled states (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Quantum equilibrium and the role of operators as observables in quantum theory.Sheldon Goldstein - manuscript
    Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schr¨ odinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Reality and the role of the wave function in quantum theory.Sheldon Goldstein & Nino Zanghi - unknown
    The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a Bohmian perspective, and shall (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Bohmian dispositions.Mauricio Suárez - 2015 - Synthese 192 (10):3203-3228.
    This paper argues for a broadly dispositionalist approach to the ontology of Bohmian mechanics . It first distinguishes the ‘minimal’ and the ‘causal’ versions of Bohm’s theory, and then briefly reviews some of the claims advanced on behalf of the ‘causal’ version by its proponents. A number of ontological or interpretive accounts of the wave function in BM are then addressed in detail, including configuration space, multi-field, nomological, and dispositional approaches. The main objection to each account is reviewed, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2018 - Synthese:1-16.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (2):159-88.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Two Kinds of High-Level Probability.Meir Hemmo & Orly Shenker - 2019 - The Monist 102 (4):458-477.
    According to influential views the probabilities in classical statistical mechanics and other special sciences are objective chances, although the underlying mechanical theory is deterministic, since the deterministic low level is inadmissible or unavailable from the high level. Here two intuitions pull in opposite directions: One intuition is that if the world is deterministic, probability can only express subjective ignorance. The other intuition is that probability of high-level phenomena, especially thermodynamic ones, is dictated by the state of affairs in the world. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Primitive ontology and quantum state in the GRW matter density theory.Matthias Egg & Michael Esfeld - 2015 - Synthese 192 (10):3229-3245.
    The paper explains in what sense the GRW matter density theory is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The primitive ontology of quantum physics: Guidelines for an assessment of the proposals.Michael Esfeld - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:99-106.
    The paper seeks to make progress from stating primitive ontology theories of quantum physics – notably Bohmian mechanics, the GRW matter density theory and the GRW flash theory – to assessing these theories. Four criteria are set out: internal coherence; empirical adequacy; relationship to other theories; explanatory value. The paper argues that the stock objections against these theories do not withstand scrutiny. Its focus then is on their explanatory value: they pursue different strategies to ground the textbook formalism of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The indeterminate present and the open future.Cristian Mariani & Giuliano Torrengo - 2021 - Synthese 199 (1-2):3923-3944.
    Explanations of the genuine openness of the future often appeal to objective indeterminacy. According to the received view, such indeterminacy is indeterminacy of certain future-tensed state of affairs that presently obtain. We shall call this view the weak indeterminate present, to distinguish it from the view we will defend in this paper, which we dub the strong indeterminate present. According to our view, unsettledness of the future is grounded on the present indeterminacy of some present-tensed state of affairs. In order (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Comment on Lockwood.David Deutsch - 1996 - British Journal for the Philosophy of Science 47 (2):222-228.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Interpretation neutrality in the classical domain of quantum theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Naturalness and Emergence.David Wallace - 2019 - The Monist 102 (4):499-524.
    I develop an account of naturalness in physics which demonstrates that naturalness assumptions are not restricted to narrow cases in high-energy physics but are a ubiquitous part of how interlevel relations are derived in physics. After exploring how and to what extent we might justify such assumptions on methodological grounds or through appeal to speculative future physics, I consider the apparent failure of naturalness in cosmology and in the Standard Model. I argue that any such naturalness failure threatens to undermine (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hempel’s Dilemma: Not Only for Physicalism.Erez Firt, Meir Hemmo & Orly Shenker - 2021 - International Studies in the Philosophy of Science 34 (2):101-129.
    According to the so-called Hempel’s Dilemma, the thesis of physicalism is either false or empty. Our intention in this paper is not to propose a solution to the Dilemma, but rather to argue as follows: to the extent that Hempel’s Dilemma applies to physicalism it equally applies to any theory that gives a deep-structure and changeable account of our experience or of high-level theories. In particular, we will show that it also applies to mind-body dualistic theories. The scope of Hempel’s (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - British Journal for the Philosophy of Science 45 (2):669-677.
    It is argued that certain recent advances in the construction of a theory of the collapses of Quantum Mechanical wave functions suggest the possibility of new and improved foundations for statistical mechanics, foundations in which epistemic considerations play no role.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Physics and chance.David Albert - 2012 - In Yemima Ben-Menahem & Meir Hemmo, Probability in Physics. Springer. pp. 17--40.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Naive realism about operators.Martin Daumer, Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1996 - Erkenntnis 45 (2-3):379 - 397.
    A source of much difficulty and confusion in the interpretation of quantum mechanics is a naive realism about operators. By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about measuring operators that occurs when the subject is quantum mechanics. Without a specification of what should be meant by measuring a quantum observable, such an expression can have no clear meaning. A definite specification is provided by (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On the paradoxical book of Bell.Marek Żukowski - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (3):566-575.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Charting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics.Pablo Acuña - 2019 - Synthese 198 (2):1711-1740.
    When we speak about different interpretations of quantum mechanics it is suggested that there is one single quantum theory that can be interpreted in different ways. However, after an explicit characterization of what it is to interpret quantum mechanics, the right diagnosis is that we have a case of predictively equivalent rival theories. I extract some lessons regarding the resulting underdetermination of theory choice. Issues about theoretical identity, theoretical and methodological pluralism, and the prospects for a realist stance towards quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Persistent Particle Ontology for Quantum Field Theory in Terms of the Dirac Sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - 2019 - British Journal for the Philosophy of Science 70 (3):747-770.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to quantum field theory. By means of the Dirac sea model—exemplified in the electron sector of the standard model neglecting radiation—we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level of wave (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations