Switch to: Citations

Add references

You must login to add references.
  1. Validation and variability: Dual challenges on the path from systems biology to systems medicine.Annamaria Carusi - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 48:28-37.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Technique, task definition, and the transition from genetics to molecular genetics: Aspects of the work on protein synthesis in the laboratories of J. Monod and P. Zamecnik.Richard M. Burian - 1993 - Journal of the History of Biology 26 (3):387-407.
    In biology proteins are uniquely important. They are not to be classed with polysaccharides, for example, which by comparison play a very minor role. Their nearest rivals are the nucleic acids....The main function of proteins is to act as enzymes....In the protein molecule Nature has devised a unique instrument in which an underlying simplicity is used to express great subtlety and versatility; it is impossible to see molecular biology in proper perspective until this peculiar combination of virtues has been clearly (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Autonomy of Theories: An Explanatory Problem.Robert W. Batterman - 2018 - Noûs:858-873.
    This paper aims to draw attention to an explanatory problem posed by the existence of multiply realized or universal behavior exhibited by certain physical systems. The problem is to explain how it is possible that systems radically distinct at lower-scales can nevertheless exhibit identical or nearly identical behavior at upper-scales. Theoretically this is reflected by the fact that continuum theories such as fluid mechanics are spectacularly successful at predicting, describing, and explaining fluid behaviors despite the fact that they do not (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Reductionism in Biology.Ingo Brigandt & Alan Love - 2008 - The Stanford Encyclopedia of Philosophy.
    Reductionism encompasses a set of ontological, epistemological, and methodological claims about the relation of different scientific domains. The basic question of reduction is whether the properties, concepts, explanations, or methods from one scientific domain (typically at higher levels of organization) can be deduced from or explained by the properties, concepts, explanations, or methods from another domain of science (typically one about lower levels of organization). Reduction is germane to a variety of issues in philosophy of science, including the structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Reductive Explanation in the Biological Sciences.Marie I. Kaiser - 2015 - Cham: Springer.
    Back cover: This book develops a philosophical account that reveals the major characteristics that make an explanation in the life sciences reductive and distinguish them from non-reductive explanations. Understanding what reductive explanations are enables one to assess the conditions under which reductive explanations are adequate and thus enhances debates about explanatory reductionism. The account of reductive explanation presented in this book has three major characteristics. First, it emerges from a critical reconstruction of the explanatory practice of the life sciences itself. (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Causation in biology: Stability, specificity, and the choice of levels of explanation.James Woodward - 2010 - Biology and Philosophy 25 (3):287-318.
    This paper attempts to elucidate three characteristics of causal relationships that are important in biological contexts. Stability has to do with whether a causal relationship continues to hold under changes in background conditions. Proportionality has to do with whether changes in the state of the cause “line up” in the right way with changes in the state of the effect and with whether the cause and effect are characterized in a way that contains irrelevant detail. Specificity is connected both to (...)
    Download  
     
    Export citation  
     
    Bookmark   267 citations  
  • Fundamental issues in systems biology.Maureen A. O'Malley & John Dupré - 2005 - Bioessays 27 (12):1270-1276.
    In the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call ‘pragmatic systems biology’, emphasises large‐scale molecular interactions; the other, which we shall refer to as ‘systems‐theoretic biology’, emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Organisms ≠ Machines.Daniel J. Nicholson - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):669-678.
    The machine conception of the organism (MCO) is one of the most pervasive notions in modern biology. However, it has not yet received much attention by philosophers of biology. The MCO has its origins in Cartesian natural philosophy, and it is based on the metaphorical redescription of the organism as a machine. In this paper I argue that although organisms and machines resemble each other in some basic respects, they are actually very different kinds of systems. I submit that the (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Multiscale Analysis of Biological Systems.Annick Lesne - 2013 - Acta Biotheoretica 61 (1):3-19.
    It is argued that multiscale approaches are necessary for an explanatory modeling of biological systems. A first step, besides common to the multiscale modeling of physical and living systems, is a bottom-up integration based on the notions of effective parameters and minimal models. Top-down effects can be accounted for in terms of effective constraints and inputs. Biological systems are essentially characterized by an entanglement of bottom-up and top-down influences following from their evolutionary history. A self-consistent multiscale scheme is proposed to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Making sense of emergence.Jaegwon Kim - 1999 - Philosophical Studies 95 (1-2):3-36.
    Download  
     
    Export citation  
     
    Bookmark   376 citations  
  • Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering.Catherine Kendig & Todd T. Eckdahl - 2017 - Philosophy, Theory, and Practice in Biology 9 (8).
    The premise of biological modularity is an ontological claim that appears to come out of practice. We understand that the biological world is modular because we can manipulate different parts of organisms in ways that would only work if there were discrete parts that were interchangeable. This is the foundation of the BioBrick assembly method widely used in synthetic biology. It is one of a number of methods that allows practitioners to construct and reconstruct biological pathways and devices using DNA (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Can biological complexity be reverse engineered?Sara Green - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 53:73-83.
    Concerns with the use of engineering approaches in biology have recently been raised. I examine two related challenges to biological research that I call the synchronic and diachronic underdetermination problem. The former refers to challenges associated with the inference of design principles underlying system capacities when the synchronic relations between lower-level processes and higher-level systems capacities are degenerate. The diachronic underdetermination problem regards the problem of reverse engineering a system where the non-linear relations between system capacities and lower-level mechanisms are (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis.Sara Green & Robert Batterman - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 7161:20-34.
    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Biological Complexity and Integrative Pluralism.Sandra D. Mitchell - 2003 - Cambridge University Press.
    This fine collection of essays by a leading philosopher of science presents a defence of integrative pluralism as the best description for the complexity of scientific inquiry today. The tendency of some scientists to unify science by reducing all theories to a few fundamental laws of the most basic particles that populate our universe is ill-suited to the biological sciences, which study multi-component, multi-level, evolved complex systems. This integrative pluralism is the most efficient way to understand the different and complex (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Re-engineering philosophy for limited beings: piecewise approximations to reality.William C. Wimsatt - 2007 - Cambridge, Mass.: Harvard University Press.
    This book offers a philosophy for error-prone humans trying to understand messy systems in the real world.
    Download  
     
    Export citation  
     
    Bookmark   390 citations  
  • The Architecture of Complexity.Herbert A. Simon - 1962 - Proceedings of the American Philosophical Society 106.
    Download  
     
    Export citation  
     
    Bookmark   518 citations  
  • Varieties of Modules: Kinds, Levels, Origins, and Behaviors.Rasmus Grønfeldt Winther - 2001 - Journal of Experimental Zoology 291:116-129.
    This article began as a review of a conference, organized by Gerhard Schlosser, entitled “Modularity in Development and Evolution.” The conference was held at, and sponsored by, the Hanse Wissenschaftskolleg in Delmenhorst, Germany in May, 2000. The article subsequently metamorphosed into a literature and concept review as well as an analysis of the differences in current perspectives on modularity. Consequently, I refer to general aspects of the conference but do not review particular presentations. I divide modules into three kinds: structural, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • What is “classical mechanics”, anyway.Mark Wilson - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oup Usa. pp. 43.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Data without models merging with models without data.Ulrich Krohs & Werner Callebaut - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier. pp. 181--213.
    Systems biology is largely tributary to genomics and other “omic” disciplines that generate vast amounts of structural data. “Omics”, however, lack a theoretical framework that would allow using these data sets as such (rather than just tiny bits that are extracted by advanced data-mining techniques) to build explanatory models that help understand physiological processes. Systems biology provides such a framework by adding a dynamic dimension to merely structural “omics”. It makes use of bottom-up and top-down models. The former are based (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Levels, Emergence, and Three Versions of Downward Causation.Claus Emmeche, Simo Koppe & Frederick Stjernfelt - 2000 - In P.B. Andersen, Claus Emmeche, N.O. Finnemann & P.V. Christiansen (eds.), Downward Causation. Aarhus, Denmark: University of Aarhus Press. pp. 322-348.
    The idea of a higher level phenomenon having a downward causal influence on a lower level process or entity has taken a variety of forms. In order to discuss the relation between emergence and downward causation, the specific variety of the thesis of downward causation (DC) must be identified. Based on some ontological theses about inter-level relations, types of causation and the possibility of reduction, three versions of DC are distinguished. Of these, the `Strong' form of DC is held to (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Tyranny of Scales.Robert W. Batterman - 2013 - In The Oxford handbook of philosophy of physics. Oxford University Press. pp. 255-286.
    This paper examines a fundamental problem in applied mathematics. How can one model the behavior of materials that display radically different, dominant behaviors at different length scales. Although we have good models for material behaviors at small and large scales, it is often hard to relate these scale-based models to one another. Macroscale models represent the integrated effects of very subtle factors that are practically invisible at the smallest, atomic, scales. For this reason it has been notoriously difficult to model (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Re-Engineering Philosophy for Limited Beings. Piecewise Approximations to Reality.William C. Wimsatt - 2010 - Critica 42 (124):108-117.
    Download  
     
    Export citation  
     
    Bookmark   358 citations  
  • The cost of modularity.Ulrich Krohs - 2009 - In Ulrich Krohs & Peter Kroes (eds.), Functions in Biological and Artificial Worlds: Comparative Philosophical Perspectives. MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   8 citations