- Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Judea Pearl - 1988 - Morgan Kaufmann.details
|
|
(1 other version)Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.details
|
|
(3 other versions)Causal learning: psychology, philosophy, and computation.Alison Gopnik & Laura Schulz (eds.) - 2007 - New York: Oxford University Press.details
|
|
Independence, invariance and the causal Markov condition.Daniel M. Hausman & James Woodward - 1999 - British Journal for the Philosophy of Science 50 (4):521-583.details
|
|
A Theory of Causal Learning in Children: Causal Maps and Bayes Nets.Alison Gopnik, Clark Glymour, Laura Schulz, Tamar Kushnir & David Danks - 2004 - Psychological Review 111 (1):3-32.details
|
|
Scientific Philosophy: Origins and Development.Friedrich Stadler (ed.) - 2013 - Springer Verlag.details
|
|
Inferring causal networks from observations and interventions.Mark Steyvers, Joshua B. Tenenbaum, Eric-Jan Wagenmakers & Ben Blum - 2003 - Cognitive Science 27 (3):453-489.details
|
|
Toward an Instructionally Oriented Theory of Example‐Based Learning.Alexander Renkl - 2014 - Cognitive Science 38 (1):1-37.details
|
|
Causal knowledge and categories: The effects of causal beliefs on categorization, induction, and similarity.Bob Rehder & Reid Hastie - 2001 - Journal of Experimental Psychology 130 (3):323-360.details
|
|
We believe in freedom of the will so that we can learn.Clark Glymour - 2004 - Behavioral and Brain Sciences 27 (5):661-662.details
|
|
BUCKLE: A model of unobserved cause learning.Christian C. Luhmann & Woo-Kyoung Ahn - 2007 - Psychological Review 114 (3):657-677.details
|
|
Review: The Grand Leap; Reviewed Work: Causation, Prediction, and Search. [REVIEW]Peter Spirtes, Clark Glymour & Richard Scheines - 1996 - British Journal for the Philosophy of Science 47 (1):113-123.details
|
|
Agents and Causes: Dispositional Intuitions As a Guide to Causal Structure.Ralf Mayrhofer & Michael R. Waldmann - 2015 - Cognitive Science 39 (1):65-95.details
|
|
When one cause casts doubt on another: A normative analysis of discounting in causal attribution.Michael W. Morris & Richard P. Larrick - 1995 - Psychological Review 102 (2):331-355.details
|
|
Learning from doing: Intervention and causal inference.Laura Schulz, Tamar Kushnir & Alison Gopnik - 2007 - In Alison Gopnik & Laura Schulz (eds.), Causal learning: psychology, philosophy, and computation. New York: Oxford University Press. pp. 67--85.details
|
|
Causal Models: How People Think About the World and its Alternatives.Steven Sloman - 2005 - Oxford, England: OUP.details
|
|
Learning causes: Psychological explanations of causal explanation. [REVIEW]Clark Glymour - 1998 - Minds and Machines 8 (1):39-60.details
|
|
What Is Wrong With Bayes Nets?Nancy Cartwright - 2001 - The Monist 84 (2):242-264.details
|
|
Causal models and the acquisition of category structure.Michael R. Waldmann, Keith J. Holyoak & Angela Fratianne - 1995 - Journal of Experimental Psychology: General 124 (2):181.details
|
|
Learning, prediction and causal Bayes nets.Clark Glymour - 2003 - Trends in Cognitive Sciences 7 (1):43-48.details
|
|
From covariation to causation: A causal power theory.Patricia Cheng - 1997 - Psychological Review 104 (2):367-405.details
|
|
The causal asymmetry.Peter A. White - 2006 - Psychological Review 113 (1):132-147.details
|
|
Beyond covariation.David A. Lagnado, Michael R. Waldmann, York Hagmayer & Steven A. Sloman - 2007 - In Alison Gopnik & Laura Schulz (eds.), Causal learning: psychology, philosophy, and computation. New York: Oxford University Press.details
|
|
Estimating causal strength: the role of structural knowledge and processing effort.Michael R. Waldmann & York Hagmayer - 2001 - Cognition 82 (1):27-58.details
|
|
Do We “do‘?Steven A. Sloman & David A. Lagnado - 2005 - Cognitive Science 29 (1):5-39.details
|
|
(3 other versions)The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology.C. Hitchcock - 2003 - Erkenntnis 59 (1):136-140.details
|
|
Causal learning in rats and humans: a minimal rational model.Michael R. Waldmann, Patricia W. Cheng, York Hagmeyer & Blaisdell & P. Aaron - 2008 - In Nick Chater & Mike Oaksford (eds.), The Probabilistic Mind: Prospects for Bayesian Cognitive Science. Oxford University Press.details
|
|