Switch to: Citations

Add references

You must login to add references.
  1. Interpolants, cut elimination and flow graphs for the propositional calculus.Alessandra Carbone - 1997 - Annals of Pure and Applied Logic 83 (3):249-299.
    We analyse the structure of propositional proofs in the sequent calculus focusing on the well-known procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing the flow of formulas in it . We show some general facts about logical graphs such as acyclicity of cut-free proofs and acyclicity of contraction-free proofs , and we give a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Review: Samuel R. Buss, Handbook of Proof Theory: The Lengths of Proofs. [REVIEW]Toshiyasu Arai - 2000 - Bulletin of Symbolic Logic 6 (4):473-475.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Herbrand-analysen zweier beweise Des satzes Von Roth: Polynomiale anzahlschranken.H. Luckhardt - 1989 - Journal of Symbolic Logic 54 (1):234-263.
    A previously unexplored method, combining logical and mathematical elements, is shown to yield substantial numerical improvements in the area of Diophantine approximations. Kreisel illustrated the method abstractly by noting that effective bounds on the number of elements are ensured if Herbrand terms from ineffective proofs of Σ 2 -finiteness theorems satisfy certain simple growth conditions. Here several efficient growth conditions for the same purpose are presented that are actually satisfied in practice, in particular, by the proofs of Roth's theorem due (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Cut normal forms and proof complexity.Matthias Baaz & Alexander Leitsch - 1999 - Annals of Pure and Applied Logic 97 (1-3):127-177.
    Statman and Orevkov independently proved that cut-elimination is of nonelementary complexity. Although their worst-case sequences are mathematically different the syntax of the corresponding cut formulas is of striking similarity. This leads to the main question of this paper: to what extent is it possible to restrict the syntax of formulas and — at the same time—keep their power as cut formulas in a proof? We give a detailed analysis of this problem for negation normal form , prenex normal form and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Herbrand analysis of 2 proofs of the Roth theorem-polynomial Bounds.H. Luckhardt - 1989 - Journal of Symbolic Logic 54 (1):234-263.
    A previously unexplored method, combining logical and mathematical elements, is shown to yield substantial numerical improvements in the area of Diophantine approximations. Kreisel illustrated the method abstractly by noting that effective bounds on the number of elements are ensured if Herbrand terms from ineffective proofs ofΣ2-finiteness theorems satisfy certain simple growth conditions. Here several efficient growth conditions for the same purpose are presented that are actually satisfied in practice, in particular, by the proofs of Roth's theorem due to Roth himself (...))
    Download  
     
    Export citation  
     
    Bookmark   6 citations