Switch to: Citations

Add references

You must login to add references.
  1. Computability and recursion.Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (3):284-321.
    We consider the informal concept of "computability" or "effective calculability" and two of the formalisms commonly used to define it, "(Turing) computability" and "(general) recursiveness". We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Models and reality.Hilary Putnam - 1980 - Journal of Symbolic Logic 45 (3):464-482.
    Download  
     
    Export citation  
     
    Bookmark   294 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • (1 other version)To be is to be a value of a variable (or to be some values of some variables).George Boolos - 1984 - Journal of Philosophy 81 (8):430-449.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Wittgenstein on rules and private language: an elementary exposition.Saul A. Kripke - 1982 - Cambridge: Harvard University Press.
    In this book Saul Kripke brings his powerful philosophical intelligence to bear on Wittgenstein's analysis of the notion of following a rule.
    Download  
     
    Export citation  
     
    Bookmark   765 citations  
  • Computational Structuralism &dagger.Volker Halbach & Leon Horsten - 2005 - Philosophia Mathematica 13 (2):174-186.
    According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Wittgenstein on Rules and Private Language. An Elementary Exposition.Saul A. Kripke - 1983 - Philosophical Quarterly 33 (133):398-404.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Plural quantification exposed.Øystein Linnebo - 2003 - Noûs 37 (1):71–92.
    This paper criticizes George Boolos's famous use of plural quantification to argue that monadic second-order logic is pure logic. I deny that plural quantification qualifies as pure logic and express serious misgivings about its alleged ontological innocence. My argument is based on an examination of what is involved in our understanding of the impredicative plural comprehension schema.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Recantation or any old w-sequence would do after all.Paul Benacerraf - 1996 - Philosophia Mathematica 4 (2):184-189.
    What Numbers Could Not Be’) that an adequate account of the numbers and our arithmetic practice must satisfy not only the conditions usually recognized to be necessary: (a) identify some w-sequence as the numbers, and (b) correctly characterize the cardinality relation that relates a set to a member of that sequence as its cardinal number—it must also satisfy a third condition: the ‘<’ of the sequence must be recursive. This paper argues that adding this further condition was a mistake—any w-sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Discrete transfinite computation models.Philip D. Welch - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific. pp. 375--414.
    Download  
     
    Export citation  
     
    Bookmark   3 citations