Switch to: Citations

Add references

You must login to add references.
  1. The Number of Non-Isomorphic Models of an Unstable First-Order Theory.Saharon Shelah - 1982 - Journal of Symbolic Logic 47 (2):436-438.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algebraically closed groups of large cardinality.Saharon Shelah & Martin Ziegler - 1979 - Journal of Symbolic Logic 44 (4):522-532.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Existence of many L∞,λ-equivalent, non- isomorphic models of T of power λ.Saharon Shelah - 1987 - Annals of Pure and Applied Logic 34 (3):291-310.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Classification Theory and the Number of Nonisomorphic Models.S. Shelah - 1982 - Journal of Symbolic Logic 47 (3):694-696.
    Download  
     
    Export citation  
     
    Bookmark   206 citations  
  • On Ehrenfeucht-fraïssé equivalence of linear orderings.Juha Oikkonen - 1990 - Journal of Symbolic Logic 55 (1):65-73.
    C. Karp has shown that if α is an ordinal with ω α = α and A is a linear ordering with a smallest element, then α and $\alpha \bigotimes A$ are equivalent in L ∞ω up to quantifer rank α. This result can be expressed in terms of Ehrenfeucht-Fraïssé games where player ∀ has to make additional moves by choosing elements of a descending sequence in α. Our aim in this paper is to prove a similar result for Ehrenfeucht-Fraïssé (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An exposition of Shelah's "main gap": counting uncountable models of $\omega$-stable and superstable theories.L. Harrington & M. Makkai - 1985 - Notre Dame Journal of Formal Logic 26 (2):139-177.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On Scott and Karp trees of uncountable models.Tapani Hyttinen & Jouko Väänänen - 1990 - Journal of Symbolic Logic 55 (3):897-908.
    Let U and B be two countable relational models of the same first order language. If the models are nonisomorphic, there is a unique countable ordinal α with the property that $\mathfrak{U} \equiv^\alpha_{\infty\omega} \mathfrak{B} \text{but not} \mathfrak{U} \equiv^{\alpha + 1}_{\infty\omega} \mathfrak{B},$ i.e. U and B are L ∞ω -equivalent up to quantifier-rank α but not up to α + 1. In this paper we consider models U and B of cardinality ω 1 and construct trees which have a similar relation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations