Switch to: Citations

Add references

You must login to add references.
  1. A new strongly minimal set.Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):147-166.
    We construct a new class of 1 categorical structures, disproving Zilber's conjecture, and study some of their properties.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Finitely generated submodels of an uncountably categorical homogeneous structure.Tapani Hyttinen - 2004 - Mathematical Logic Quarterly 50 (1):77.
    We generalize the result of non-finite axiomatizability of totally categorical first-order theories from elementary model theory to homogeneous model theory. In particular, we lift the theory of envelopes to homogeneous model theory and develope theory of imaginaries in the case of ω-stable homogeneous classes of finite U-rank.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpreting Groups and Fields in Some Nonelementary Classes.Tapani Hyttinen, Olivier Lessmann & Saharon Shelah - 2005 - Journal of Mathematical Logic 5 (1):1-47.
    This paper is concerned with extensions of geometric stability theory to some nonelementary classes. We prove the following theorem:Theorem. Let [Formula: see text] be a large homogeneous model of a stable diagram D. Let p, q ∈ SD(A), where p is quasiminimal and q unbounded. Let [Formula: see text] and [Formula: see text]. Suppose that there exists an integer n < ω such that [Formula: see text] for any independent a1, …, an∈ P and finite subset C ⊆ Q, but (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Simplicity and uncountable categoricity in excellent classes.Tapani Hyttinen & Olivier Lessmann - 2006 - Annals of Pure and Applied Logic 139 (1):110-137.
    We introduce Lascar strong types in excellent classes and prove that they coincide with the orbits of the group generated by automorphisms fixing a model. We define a new independence relation using Lascar strong types and show that it is well-behaved over models, as well as over finite sets. We then develop simplicity and show that, under simplicity, the independence relation satisfies all the properties of nonforking in a stable first order theory. Further, simplicity for an excellent class, as well (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Categoricity transfer in simple finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2011 - Journal of Symbolic Logic 76 (3):759 - 806.
    We continue our study of finitary abstract elementary classes, defined in [7]. In this paper, we prove a categoricity transfer theorem for a case of simple finitary AECs. We introduce the concepts of weak κ-categoricity and f-primary models to the framework of א₀-stable simple finitary AECs with the extension property, whereby we gain the following theorem: Let (������, ≼ ������ ) be a simple finitary AEC, weakly categorical in some uncountable κ. Then (������, ≼ ������ ) is weakly categorical in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On quasiminimal excellent classes.Jonathan Kirby - 2010 - Journal of Symbolic Logic 75 (2):551-564.
    A careful exposition of Zilber's quasiminimal excellent classes and their categoricity is given, leading to two new results: the L ω₁ ,ω (Q)-definability assumption may be dropped, and each class is determined by its model of dimension $\aleph _{0}$.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Canonical forking in AECs.Will Boney, Rami Grossberg, Alexei Kolesnikov & Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (7):590-613.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Canonical bases in excellent classes.Tapani Hyttinen & Olivier Lessmann - 2008 - Journal of Symbolic Logic 73 (1):165-180.
    We show that any (atomic) excellent class K can be expanded with hyperimaginaries to form an (atomic) excellent class Keq which has canonical bases. When K is, in addition, of finite U-rank, then Keq is also simple and has a full canonical bases theorem. This positive situation contrasts starkly with homogeneous model theory for example, where the eq-expansion may fail to be homogeneous. However, this paper shows that expanding an ω-stable, homogeneous class K gives rise to an excellent class, which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Locally modular geometries in homogeneous structures.Tapani Hyttinen - 2005 - Mathematical Logic Quarterly 51 (3):291.
    We show that if M is a strongly minimal large homogeneous structure in a countable similarity type and the pregeometry of M is locally modular but not modular, then the pregeometry is affine over a division ring.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finiteness of U-rank implies simplicity in homogeneous structures.Tapani Hyttinen - 2003 - Mathematical Logic Quarterly 49 (6):576.
    A superstable homogeneous structure is said to be simple if every complete type over any set A has a free extension over any B ⊇ A. In this paper we give a characterization for this property in terms of U-rank. As a corollary we get that if the structure has finite U-rank, then it is simple.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Independence in finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2006 - Annals of Pure and Applied Logic 143 (1-3):103-138.
    In this paper we study a specific subclass of abstract elementary classes. We construct a notion of independence for these AEC’s and show that under simplicity the notion has all the usual properties of first order non-forking over complete types. Our approach generalizes the context of 0-stable homogeneous classes and excellent classes. Our set of assumptions follow from disjoint amalgamation, existence of a prime model over 0/, Löwenheim–Skolem number being ω, -tameness and a property we call finite character. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (2 other versions)[Omnibus Review].Ehud Hrushovski - 1993 - Journal of Symbolic Logic 58 (2):710-713.
    Reviewed Works:B. I. Zil'ber, L. Pacholski, J. Wierzejewski, A. J. Wilkie, Totally Categorical Theories: Structural Properties and the Non-Finite Axiomatizability.B. I. Zil'ber, Strongly Minimal Countably Categorical Theories.B. I. Zil'ber, Strongly Minimal Countably Categorical Theories. II.B. I. Zil'ber, Strongly Minimal Countably Categorical Theories. III.B. I. Zil'ber, E. Mendelson, Totally Categorical Structures and Combinatorial Geometries.B. I. Zil'ber, The Structure of Models of Uncountably Categorical Theories.
    Download  
     
    Export citation  
     
    Bookmark   17 citations