Switch to: Citations

Add references

You must login to add references.
  1. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life.Eva Jablonka, Marion J. Lamb & Anna Zeligowski - 2005 - Bradford.
    Ideas about heredity and evolution are undergoing a revolutionary change. New findings in molecular biology challenge the gene-centered version of Darwinian theory according to which adaptation occurs only through natural selection of chance DNA variations. In Evolution in Four Dimensions, Eva Jablonka and Marion Lamb argue that there is more to heredity than genes. They trace four "dimensions" in evolution -- four inheritance systems that play a role in evolution: genetic, epigenetic, behavioral, and symbolic. These systems, they argue, can all (...)
    Download  
     
    Export citation  
     
    Bookmark   319 citations  
  • What Genes Can't Do.Lenny Moss - 2003 - MIT Press.
    A historical and critical analysis of the concept of the gene that attempts to provide new perspectives and metaphors for the transformation of biology and its philosophy.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Tracking the shift to 'postgenomics'.Karola Stotz, Adam Bostanci & Paul E. Griffiths - 2006 - Community Genetics 9 (3).
    Current knowledge about the variety and complexity of the processes that allow regulated gene expression in living organisms calls for a new understanding of genes. A ‘postgenomic’ understanding of genes as entities constituted during genome expression is outlined and illustrated with specific examples that formed part of a survey research instrument developed by two of the authors for an ongoing empirical study of conceptual change in contemporary biology.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Embryology, Epigenesis and Evolution: Taking Development Seriously.Jason Scott Robert - 2004 - Cambridge University Press.
    Historically, philosophers of biology have tended to sidestep the problem of development by focusing primarily on evolutionary biology and, more recently, on molecular biology and genetics. Quite often too, development has been misunderstood as simply, or even primarily, a matter of gene activation and regulation. Nowadays a growing number of philosophers of science are focusing their analyses on the complexities of development, and in Embryology, Epigenesis and Evolution Jason Scott Robert explores the nature of development against current trends in biological (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Trans‐splicing in Drosophila.Vincenzo Pirrotta - 2002 - Bioessays 24 (11):988-991.
    Splicing is an efficient and precise mechanism that removes noncoding regions from a single primary RNA transcript. Cutting and rejoining of the segments occurs on nascent RNA. Trans-splicing between small specialized RNAs and a primary transcript has been known in some organisms but recent papers show that trans-splicing between two RNA molecules containing different coding regions is the normal mode in a Drosophila gene.1-3 The mod(mdg4) gene produces 26 different mRNAs encoding as many protein isoforms. The differences lie in alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.John S. Mattick - 2003 - Bioessays 25 (10):930-939.
    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • What Genes Can’t Do.Lenny Moss - 2003 - Journal of the History of Biology 38 (2):383-384.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Molecular Epigenesis, Molecular Pleiotropy, and Molecular Gene Definitions.Richard Burian - 2004 - History and Philosophy of the Life Sciences 26 (1):59 - 80.
    Recent work on gene concepts has been influenced by recognition of the extent to which RNA transcripts from a given DNA sequence yield different products in different cellular environments. These transcripts are altered in many ways and yield many products based, somehow, on the sequence of nucleotides in the DNA. I focus on alternative splicing of RNA transcripts (which often yields distinct proteins from the same raw transcript) and on 'gene sharing', in which a single gene produces distinct proteins with (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Introduction.Karola Stotz - 2004 - History and Philosophy of the Life Sciences 26 (1):3-4.
    Download  
     
    Export citation  
     
    Bookmark   1 citation