Switch to: Citations

Add references

You must login to add references.
  1. Does matter really matter? Computer simulations, experiments, and materiality.Wendy S. Parker - 2009 - Synthese 169 (3):483-496.
    A number of recent discussions comparing computer simulation and traditional experimentation have focused on the significance of “materiality.” I challenge several claims emerging from this work and suggest that computer simulation studies are material experiments in a straightforward sense. After discussing some of the implications of this material status for the epistemology of computer simulation, I consider the extent to which materiality (in a particular sense) is important when it comes to making justified inferences about target systems on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Dynamical Models: An Alternative or Complement to Mechanistic Explanations?David M. Kaplan & William Bechtel - 2011 - Topics in Cognitive Science 3 (2):438-444.
    Abstract While agreeing that dynamical models play a major role in cognitive science, we reject Stepp, Chemero, and Turvey's contention that they constitute an alternative to mechanistic explanations. We review several problems dynamical models face as putative explanations when they are not grounded in mechanisms. Further, we argue that the opposition of dynamical models and mechanisms is a false one and that those dynamical models that characterize the operations of mechanisms overcome these problems. By briefly considering examples involving the generation (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Philosophy for the Rest of Cognitive Science.Nigel Stepp, Anthony Chemero & Michael T. Turvey - 2011 - Topics in Cognitive Science 3 (2):425-437.
    Cognitive science has always included multiple methodologies and theoretical commitments. The philosophy of cognitive science should embrace, or at least acknowledge, this diversity. Bechtel’s (2009a) proposed philosophy of cognitive science, however, applies only to representationalist and mechanist cognitive science, ignoring the substantial minority of dynamically oriented cognitive scientists. As an example of nonrepresentational, dynamical cognitive science, we describe strong anticipation as a model for circadian systems (Stepp & Turvey, 2009). We then propose a philosophy of science appropriate to nonrepresentational, dynamical (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Decomposing, recomposing, and situating circadian mechanisms: Three tasks in developing mechanistic explanations.William Bechtel & Adele Abrahamsen - 2009 - In Alexander Hieke & Hannes Leitgeb (eds.), Reduction: Between the Mind and the Brain. Frankfurt: Ontos Verlag. pp. 12--177.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1349 citations  
  • Scientific Models in Philosophy of Science.Daniela M. Bailer-Jones - 2009 - University of Pittsburgh Press.
    Scientists have used models for hundreds of years as a means of describing phenomena and as a basis for further analogy. In Scientific Models in Philosophy of Science, Daniela Bailer-Jones assembles an original and comprehensive philosophical analysis of how models have been used and interpreted in both historical and contemporary contexts. Bailer-Jones delineates the many forms models can take (ranging from equations to animals; from physical objects to theoretical constructs), and how they are put to use. She examines early mechanical (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity).Stephen Strogatz - 2000 - Westview Press.
    This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.A unique feature of the book is its emphasis on applications. These include (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • When mechanistic models explain.Carl F. Craver - 2006 - Synthese 153 (3):355-376.
    Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is (...)
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Strategies in the interfield discovery of the mechanism of protein synthesis.Lindley Darden & Carl Craver - 2002 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 33 (1):1-28.
    In the 1950s and 1960s, an interfield interaction between molecular biologists and biochemists integrated important discoveries about the mechanism of protein synthesis. This extended discovery episode reveals two general reasoning strategies for eliminating gaps in descriptions of the productive continuity of mechanisms: schema instantiation and forward chaining/backtracking. Schema instantiation involves filling roles in an overall framework for the mechanism. Forward chaining and backtracking eliminate gaps using knowledge about types of entities and their activities. Attention to mechanisms highlights salient features of (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Mechanism and Biological Explanation.William Bechtel - 2011 - Philosophy of Science 78 (4):533-557.
    This article argues that the basic account of mechanism and mechanistic explanation, involving sequential execution of qualitatively characterized operations, is itself insufficient to explain biological phenomena such as the capacity of living organisms to maintain themselves as systems distinct from their environment. This capacity depends on cyclic organization, including positive and negative feedback loops, which can generate complex dynamics. Understanding cyclically organized mechanisms with complex dynamics requires coordinating research directed at decomposing mechanisms into parts and operations with research using computational (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Complex biological mechanisms: Cyclic, oscillatory, and autonomous.William Bechtel & Adele Abrahamsen - unknown
    The mechanistic perspective has dominated biological disciplines such as biochemistry, physiology, cell and molecular biology, and neuroscience, especially during the 20th century. The primary strategy is reductionist: organisms are to be decomposed into component parts and operations at multiple levels. Researchers adopting this perspective have generated an enormous body of information about the mechanisms of life at scales ranging from the whole organism down to genetic and other molecular operations.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Modeling mechanisms.Stuart Glennan - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):443-464.
    Philosophers of science increasingly believe that much of science is concerned with understanding the mechanisms responsible for the production of natural phenomena. An adequate understanding of scientific research requires an account of how scientists develop and test models of mechanisms. This paper offers a general account of the nature of mechanical models, discussing the representational relationship that holds between mechanisms and their models as well as the techniques that can be used to test and refine such models. The analysis is (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Mechanisms and models.Lindley Darden - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   22 citations