Switch to: References

Add citations

You must login to add citations.
  1. Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rethinking Ethnography for Philosophy of Science.Nancy J. Nersessian & Miles MacLeod - 2022 - Philosophy of Science 89 (4):721-741.
    We lay groundwork for applying ethnographic methods in philosophy of science. We frame our analysis in terms of two tasks: to identify the benefits of an ethnographic approach in philosophy of science and to structure an ethnographic approach for philosophical investigation best adapted to provide information relevant to philosophical interests and epistemic values. To this end, we advocate for a purpose-guided form of cognitive ethnography that mediates between the explanatory and normative interests of philosophy of science, while maintaining openness and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point.Jan Pieter Konsman - 2024 - Studies in History and Philosophy of Science Part A 103 (C):123-136.
    Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reduction.A. Hütterman & A. C. Love - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA. pp. 460-484.
    Reduction and reductionism have been central philosophical topics in analytic philosophy of science for more than six decades. Together they encompass a diversity of issues from metaphysics and epistemology. This article provides an introduction to the topic that illuminates how contemporary epistemological discussions took their shape historically and limns the contours of concrete cases of reduction in specific natural sciences. The unity of science and the impulse to accomplish compositional reduction in accord with a layer-cake vision of the sciences, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • New Mechanistic Explanation and the Need for Explanatory Constraints.L. R. Franklin-Hall - 2016 - In Ken Aizawa & Carl Gillett (eds.), Scientific Composition and Metaphysical Ground. London: Palgrave-Macmillan. pp. 41-74.
    This paper critiques the new mechanistic explanatory program on grounds that, even when applied to the kinds of examples that it was originally designed to treat, it does not distinguish correct explanations from those that blunder. First, I offer a systematization of the explanatory account, one according to which explanations are mechanistic models that satisfy three desiderata: they must 1) represent causal relations, 2) describe the proper parts, and 3) depict the system at the right ‘level.’ Second, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Etiological Explanations: Illness Causation Theory.Olaf Dammann - 2020 - Boca Raton, FL, USA: CRC Press.
    Theory of illness causation is an important issue in all biomedical sciences, and solid etiological explanations are needed in order to develop therapeutic approaches in medicine and preventive interventions in public health. Until now, the literature about the theoretical underpinnings of illness causation research has been scarce and fragmented, and lacking a convenient summary. This interdisciplinary book provides a convenient and accessible distillation of the current status of research into this developing field, and adds a personal flavor to the discussion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Language and scientific explanation: Where does semantics fit in?Eran Asoulin - 2020 - Berlin, Germany: Language Science Press.
    This book discusses the two main construals of the explanatory goals of semantic theories. The first, externalist conception, understands semantic theories in terms of a hermeneutic and interpretive explanatory project. The second, internalist conception, understands semantic theories in terms of the psychological mechanisms in virtue of which meanings are generated. It is argued that a fruitful scientific explanation is one that aims to uncover the underlying mechanisms in virtue of which the observable phenomena are made possible, and that a scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The New Mechanical Philosophy.Stuart Glennan - 2017 - Oxford: Oxford University Press.
    This volume argues for a new image of science that understands both natural and social phenomena to be the product of mechanisms, casting the work of science as an effort to understand those mechanisms. Glennan offers an account of the nature of mechanisms and of the models used to represent them in physical, life, and social sciences.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • II—James Woodward: Mechanistic Explanation: Its Scope and Limits.James Woodward - 2013 - Aristotelian Society Supplementary Volume 87 (1):39-65.
    This paper explores the question of whether all or most explanations in biology are, or ideally should be, ‘mechanistic’. I begin by providing an account of mechanistic explanation, making use of the interventionist ideas about causation I have developed elsewhere. This account emphasizes the way in which mechanistic explanations, at least in the biological sciences, integrate difference‐making and spatio‐temporal information, and exhibit what I call fine‐tunedness of organization. I also emphasize the role played by modularity conditions in mechanistic explanation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control.Jason Winning & William Bechtel - 2018 - Minds and Machines 28 (2).
    Existing accounts of mechanistic causation are not suited for understanding causation in biological and neural mechanisms because they do not have the resources to capture the unique causal structure of control heterarchies. In this paper, we provide a new account on which the causal powers of mechanisms are grounded by time-dependent, variable constraints. Constraints can also serve as a key bridge concept between the mechanistic approach to explanation and underappreciated work in theoretical biology that sheds light on how biological systems (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Strange Bedfellows? Common Ground on the Moral Status Question.Shane Maxwell Wilkins - 2016 - Journal of Medicine and Philosophy 41 (2):130-147.
    When does a developing human being acquire moral status? I outline three different positions based on substance ontology that attempt to solve the question by locating some morally salient event in the process of human development question. In the second section, I consider some specific empirical objections to one of these positions, refute them, and then show how similar objections and responses would generalize to the other substance-based positions on the question. The crucial finding is that all the attempts to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The standard ontological framework of cognitive neuroscience: Some lessons from Broca’s area.Marco Viola & Elia Zanin - 2017 - Philosophical Psychology 30 (7):945-969.
    Since cognitive neuroscience aims at giving an integrated account of mind and brain, its ontology should include both neural and cognitive entities and specify their relations. According to what we call the standard ontological framework of cognitive neuroscience, the aim of cognitive neuroscience should be to establish one-to-one mappings between neural and cognitive entities. Where such entities do not yet closely align, this can be achieved by reforming the cognitive ontology, the neural ontology, or both. In order to assess the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Multiscale Modeling of Gene–Behavior Associations in an Artificial Neural Network Model of Cognitive Development.Michael S. C. Thomas, Neil A. Forrester & Angelica Ronald - 2016 - Cognitive Science 40 (1):51-99.
    In the multidisciplinary field of developmental cognitive neuroscience, statistical associations between levels of description play an increasingly important role. One example of such associations is the observation of correlations between relatively common gene variants and individual differences in behavior. It is perhaps surprising that such associations can be detected despite the remoteness of these levels of description, and the fact that behavior is the outcome of an extended developmental process involving interaction of the whole organism with a variable environment. Given (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanisms and generative material models.Sim-Hui Tee - 2019 - Synthese 198 (7):6139-6157.
    Mechanisms consist of component parts and processes organized in a specific way to produce changes that may give rise to one or more phenomena. I aim to examine the generative mechanism of generative material models in the production of new material models. A generative material model in biology is a living material model that is capable of generating new material models. I contend that generative mechanisms of a generative material model are not to be conflated with biological mechanisms: the former (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tasks in cognitive science: mechanistic and nonmechanistic perspectives.Samuel D. Taylor - forthcoming - Phenomenology and the Cognitive Sciences:1-27.
    A tension exists between those who do—e.g. Meyer (The British Journal for the Philosophy of Science 71:959–985, 2020 ) and Chemero ( 2011 )—and those who do not—e.g. Kaplan and Craver (Philosophy of Science 78:601–627, 2011 ) Piccinini and Craver (Synthese 183:283–311, 2011 )—afford nonmechanistic explanations a role in cognitive science. Here, I argue that one’s perspective on this matter will cohere with one’s interpretation of the tasks of cognitive science; that is, of the actions for which cognitive scientists are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two kinds of explanatory integration in cognitive science.Samuel D. Taylor - 2019 - Synthese 198 (5):4573-4601.
    Some philosophers argue that we should eschew cross-explanatory integrations of mechanistic, dynamicist, and psychological explanations in cognitive science, because, unlike integrations of mechanistic explanations, they do not deliver genuine, cognitive scientific explanations. Here I challenge this claim by comparing the theoretical virtues of both kinds of explanatory integrations. I first identify two theoretical virtues of integrations of mechanistic explanations—unification and greater qualitative parsimony—and argue that no cross-explanatory integration could have such virtues. However, I go on to argue that this is (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mechanistic Explanation of Biological Processes.Derek John Skillings - 2015 - Philosophy of Science 82 (5):1139-1151.
    Biological processes are often explained by identifying the underlying mechanisms that generate a phenomenon of interest. I characterize a basic account of mechanistic explanation and then present three challenges to this account, illustrated with examples from molecular biology. The basic mechanistic account is insufficient for explaining nonsequential and nonlinear dynamic processes, is insufficient for explaining the inherently stochastic nature of many biological mechanisms, and fails to give a proper framework for analyzing organization. I suggest that biological processes are best approached (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Constraints on Localization and Decomposition as Explanatory Strategies in the Biological Sciences.Michael Silberstein & Anthony Chemero - 2013 - Philosophy of Science 80 (5):958-970.
    Several articles have recently appeared arguing that there really are no viable alternatives to mechanistic explanation in the biological sciences (Kaplan and Bechtel; Kaplan and Craver). We argue that mechanistic explanation is defined by localization and decomposition. We argue further that systems neuroscience contains explanations that violate both localization and decomposition. We conclude that the mechanistic model of explanation needs to either stretch to now include explanations wherein localization or decomposition fail or acknowledge that there are counterexamples to mechanistic explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Integrated-structure emergence and its mechanistic explanation.Gil Santos - 2020 - Synthese 198 (9):8687-8711.
    This paper proposes an integrated-structure notion of interlevel emergence, from a dynamic relational ontological perspective. First, I will argue that only the individualist essentialism of atomistic metaphysics can block the possibility of interlevel emergence. Then I will show that we can make sense of emergence by recognizing the formation of structures of transformative and interdependent causal relations in the generation and development of a particular class of mereological complexes called integrated systems. Finally, I shall argue that even though the emergent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards to An Explanation for Conceptual Change: A Mechanistic Alternative.Anna-Mari Rusanen - 2014 - Science & Education 23 (7):1413-1425.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Causal Concepts in Biology: How Pathways Differ from Mechanisms and Why It Matters.Lauren N. Ross - 2021 - British Journal for the Philosophy of Science 72 (1):131-158.
    In the last two decades few topics in philosophy of science have received as much attention as mechanistic explanation. A significant motivation for these accounts is that scientists frequently use the term “mechanism” in their explanations of biological phenomena. While scientists appeal to a variety of causal concepts in their explanations, many philosophers argue or assume that all of these concepts are well understood with the single notion of mechanism. This reveals a significant problem with mainstream mechanistic accounts– although philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Why there isn’t inter-level causation in mechanisms.Felipe Romero - 2015 - Synthese 192 (11):3731-3755.
    The experimental interventions that provide evidence of causal relations are notably similar to those that provide evidence of constitutive relevance relations. In the first two sections, I show that this similarity creates a tension: there is an inconsistent triad between Woodward’s popular interventionist theory of causation, Craver’s mutual manipulability account of constitutive relevance in mechanisms, and a variety of arguments for the incoherence of inter-level causation. I argue for an interpretation of the views in which the tension is merely apparent. (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Extended Mechanistic Explanations: Expanding the Current Mechanistic Conception to Include More Complex Biological Systems.Sarah M. Roe & Bert Baumgaertner - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (4):517-534.
    Mechanistic accounts of explanation have recently found popularity within philosophy of science. Presently, we introduce the idea of an extended mechanistic explanation, which makes explicit room for the role of environment in explanation. After delineating Craver and Bechtel’s account, we argue this suggestion is not sufficiently robust when we take seriously the mechanistic environment and modeling practices involved in studying contemporary complex biological systems. Our goal is to extend the already profitable mechanistic picture by pointing out the importance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • ANNs and Unifying Explanations: Reply to Erasmus, Brunet, and Fisher.Yunus Prasetya - 2022 - Philosophy and Technology 35 (2):1-9.
    In a recent article, Erasmus, Brunet, and Fisher (2021) argue that Artificial Neural Networks (ANNs) are explainable. They survey four influential accounts of explanation: the Deductive-Nomological model, the Inductive-Statistical model, the Causal-Mechanical model, and the New-Mechanist model. They argue that, on each of these accounts, the features that make something an explanation is invariant with regard to the complexity of the explanans and the explanandum. Therefore, they conclude, the complexity of ANNs (and other Machine Learning models) does not make them (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neural Representations Beyond “Plus X”.Alessio Plebe & Vivian M. De La Cruz - 2018 - Minds and Machines 28 (1):93-117.
    In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Varieties of difference-makers: Considerations on chirimuuta’s approach to non-causal explanation in neuroscience.Abel Wajnerman Paz - 2019 - Manuscrito 42 (1):91-119.
    Causal approaches to explanation often assume that a model explains by describing features that make a difference regarding the phenomenon. Chirimuuta claims that this idea can be also used to understand non-causal explanation in computational neuroscience. She argues that mathematical principles that figure in efficient coding explanations are non-causal difference-makers. Although these principles cannot be causally altered, efficient coding models can be used to show how would the phenomenon change if the principles were modified in counterpossible situations. The problem is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Multilevel Research Strategies and Biological Systems.Maureen A. O’Malley, Ingo Brigandt, Alan C. Love, John W. Crawford, Jack A. Gilbert, Rob Knight, Sandra D. Mitchell & Forest Rohwer - 2014 - Philosophy of Science 81 (5):811-828.
    Multilevel research strategies characterize contemporary molecular inquiry into biological systems. We outline conceptual, methodological, and explanatory dimensions of these multilevel strategies in microbial ecology, systems biology, protein research, and developmental biology. This review of emerging lines of inquiry in these fields suggests that multilevel research in molecular life sciences has significant implications for philosophical understandings of explanation, modeling, and representation.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Towards a Cognitive Neuroscience of Intentionality.Alex Morgan & Gualtiero Piccinini - 2018 - Minds and Machines 28 (1):119-139.
    We situate the debate on intentionality within the rise of cognitive neuroscience and argue that cognitive neuroscience can explain intentionality. We discuss the explanatory significance of ascribing intentionality to representations. At first, we focus on views that attempt to render such ascriptions naturalistic by construing them in a deflationary or merely pragmatic way. We then contrast these views with staunchly realist views that attempt to naturalize intentionality by developing theories of content for representations in terms of information and biological function. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Proper activity, preference, and the meaning of life.Lucas J. Mix - 2014 - Philosophy, Theory, and Practice in Biology 6 (20150505).
    The primary challenge for generating a useful scientific definition of life comes from competing concepts of biological activity and our failure to make them explicit in our models. I set forth a three-part scheme for characterizing definitions of life, identifying a binary , a range , and a preference . The three components together form a proper activity in biology . To be clear, I am not proposing that proper activity be adopted as the best definition of life or even (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Non-mechanistic Option: Defending Dynamical Explanations.Russell Meyer - 2018 - British Journal for the Philosophy of Science 71 (3):959-985.
    This article demonstrates that non-mechanistic, dynamical explanations are a viable approach to explanation in the special sciences. The claim that dynamical models can be explanatory without reference to mechanisms has previously been met with three lines of criticism from mechanists: the causal relevance concern, the genuine laws concern, and the charge of predictivism. I argue, however, that these mechanist criticisms fail to defeat non-mechanistic, dynamical explanation. Using the examples of Haken et al.’s model of bimanual coordination, and Thelen et al.’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A right way to explain? Function, mechanism, and the order of explanations.Amanda M. McCarthy & Frank C. Keil - 2023 - Cognition 238 (C):105494.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Heuristic of Form: Mitochondrial Morphology and the Explanation of Oxidative Phosphorylation.Karl S. Matlin - 2016 - Journal of the History of Biology 49 (1):37-94.
    In the 1950s and 1960s, the search for the mechanism of oxidative phosphorylation by biochemists paralleled the description of mitochondrial form by George Palade and Fritiof Sjöstrand using electron microscopy. This paper explores the extent to which biochemists studying oxidative phosphorylation took mitochondrial form into account in the formulation of hypotheses, design of experiments, and interpretation of results. By examining experimental approaches employed by the biochemists studying oxidative phosphorylation, and their interactions with Palade, I suggest that use of mitochondrial form (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mechanistic Explanation in Systems Biology: Cellular Networks.Dana Matthiessen - 2017 - British Journal for the Philosophy of Science 68 (1):1-25.
    It is argued that once biological systems reach a certain level of complexity, mechanistic explanations provide an inadequate account of many relevant phenomena. In this article, I evaluate such claims with respect to a representative programme in systems biological research: the study of regulatory networks within single-celled organisms. I argue that these networks are amenable to mechanistic philosophy without need to appeal to some alternate form of explanation. In particular, I claim that we can understand the mathematical modelling techniques of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 49:1-11.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Idealization of Causation in Mechanistic Explanation.Alan C. Love & Marco J. Nathan - 2015 - Philosophy of Science 82 (5):761-774.
    Causal relations among components and activities are intentionally misrepresented in mechanistic explanations found routinely across the life sciences. Since several mechanists explicitly advocate accurately representing factors that make a difference to the outcome, these idealizations conflict with the stated rationale for mechanistic explanation. We argue that these idealizations signal an overlooked feature of reasoning in molecular and cell biology—mechanistic explanations do not occur in isolation—and suggest that explanatory practices within the mechanistic tradition share commonalities with model-based approaches prevalent in population (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Collaborative explanation, explanatory roles, and scientific explaining in practice.Alan C. Love - 2015 - Studies in History and Philosophy of Science Part A 52:88-94.
    Scientific explanation is a perennial topic in philosophy of science, but the literature has fragmented into specialized discussions in different scientific disciplines. An increasing attention to scientific practice by philosophers is (in part) responsible for this fragmentation and has put pressure on criteria of adequacy for philosophical accounts of explanation, usually demanding some form of pluralism. This commentary examines the arguments offered by Fagan and Woody with respect to explanation and understanding in scientific practice. I begin by scrutinizing Fagan's concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Biophysics of Regenerative Repair Suggests New Perspectives on Biological Causation.Michael Levin - 2020 - Bioessays 42 (2):1900146.
    Evolution exploits the physics of non‐neural bioelectricity to implement anatomical homeostasis: a process in which embryonic patterning, remodeling, and regeneration achieve invariant anatomical outcomes despite external interventions. Linear “developmental pathways” are often inadequate explanations for dynamic large‐scale pattern regulation, even when they accurately capture relationships between molecular components. Biophysical and computational aspects of collective cell activity toward a target morphology reveal interesting aspects of causation in biology. This is critical not only for unraveling evolutionary and developmental events, but also for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Structure of Scientific Theories, Explanation, and Unification. A Causal–Structural Account.Bert Leuridan - 2014 - British Journal for the Philosophy of Science 65 (4):717-771.
    What are scientific theories and how should they be represented? In this article, I propose a causal–structural account, according to which scientific theories are to be represented as sets of interrelated causal and credal nets. In contrast with other accounts of scientific theories (such as Sneedian structuralism, Kitcher’s unificationist view, and Darden’s theory of theoretical components), this leaves room for causality to play a substantial role. As a result, an interesting account of explanation is provided, which sheds light on explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Varieties of noise: Analogical reasoning in synthetic biology.Tarja Knuuttila & Andrea Loettgers - 2014 - Studies in History and Philosophy of Science Part A 48:76-88.
    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Modelling gene regulation: (De)compositional and template-based strategies.Tarja Knuuttila & Vivette García Deister - 2019 - Studies in History and Philosophy of Science Part A 77:101-111.
    Although the interdisciplinary nature of contemporary biological sciences has been addressed by philosophers, historians, and sociologists of science, the different ways in which engineering concepts and methods have been applied in biology have been somewhat neglected. We examine - using the mechanistic philosophy of science as an analytic springboard - the transfer of network methods from engineering to biology through the cases of two biology laboratories operating at the California Institute of Technology. The two laboratories study gene regulatory networks, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Synthetic Modeling and Mechanistic Account: Material Recombination and Beyond.Tarja Knuuttila & Andrea Loettgers - 2013 - Philosophy of Science 80 (5):874-885.
    Recently, Bechtel and Abrahamsen have argued that mathematical models study the dynamics of mechanisms by recomposing the components and their operations into an appropriately organized system. We will study this claim through the practice of combinational modeling in circadian clock research. In combinational modeling, experiments on model organisms and mathematical/computational models are combined with a new type of model—a synthetic model. We argue that the strategy of recomposition is more complicated than what Bechtel and Abrahamsen indicate. Moreover, synthetic modeling as (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Modelling as Indirect Representation? The Lotka–Volterra Model Revisited.Tarja Knuuttila & Andrea Loettgers - 2017 - British Journal for the Philosophy of Science 68 (4):1007-1036.
    ABSTRACT Is there something specific about modelling that distinguishes it from many other theoretical endeavours? We consider Michael Weisberg’s thesis that modelling is a form of indirect representation through a close examination of the historical roots of the Lotka–Volterra model. While Weisberg discusses only Volterra’s work, we also study Lotka’s very different design of the Lotka–Volterra model. We will argue that while there are elements of indirect representation in both Volterra’s and Lotka’s modelling approaches, they are largely due to two (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.Tarja Knuuttila & Andrea Loettgers - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):158-169.
    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Demarcating cognition: the cognitive life sciences.Fred Keijzer - 2020 - Synthese 198 (Suppl 1):137-157.
    This paper criticizes the role of intuition-based ascriptions of cognition that are closely related to the ascription of mind. This practice hinders the explication of a clear and stable target domain for the cognitive sciences. To move forward, the proposal is to cut the notion of cognition free from such ascriptions and the intuition-based judgments that drive them. Instead, cognition is reinterpreted and developed as a scientific concept that is tied to a material domain of research. In this reading, cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Thought Experiments and The Pragmatic Nature of Explanation.Panagiotis Karadimas - forthcoming - Foundations of Science:1-24.
    Different why-questions emerge under different contexts and require different information in order to be addressed. Hence a relevance relation can hardly be invariant across contexts. However, what is indeed common under any possible context is that all explananda require scientific information in order to be explained. So no scientific information is in principle explanatorily irrelevant, it only becomes so under certain contexts. In view of this, scientific thought experiments can offer explanations, should we analyze their representational strategies. Their representations involve (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Metaphysics of Constitutive Mechanistic Phenomena.Marie I. Kaiser & Beate Krickel - 2017 - British Journal for the Philosophy of Science 68 (3).
    The central aim of this article is to specify the ontological nature of constitutive mechanistic phenomena. After identifying three criteria of adequacy that any plausible approach to constitutive mechanistic phenomena must satisfy, we present four different suggestions, found in the mechanistic literature, of what mechanistic phenomena might be. We argue that none of these suggestions meets the criteria of adequacy. According to our analysis, constitutive mechanistic phenomena are best understood as what we will call ‘object-involving occurrents’. Furthermore, on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Models, robustness, and non-causal explanation: a foray into cognitive science and biology.Elizabeth Irvine - 2015 - Synthese 192 (12):3943-3959.
    This paper is aimed at identifying how a model’s explanatory power is constructed and identified, particularly in the practice of template-based modeling (Humphreys, Philos Sci 69:1–11, 2002; Extending ourselves: computational science, empiricism, and scientific method, 2004), and what kinds of explanations models constructed in this way can provide. In particular, this paper offers an account of non-causal structural explanation that forms an alternative to causal–mechanical accounts of model explanation that are currently popular in philosophy of biology and cognitive science. Clearly, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mechanistic Explanation: Integrating the Ontic and Epistemic.Phyllis Illari - 2013 - Erkenntnis 78 (2):237-255.
    Craver claims that mechanistic explanation is ontic, while Bechtel claims that it is epistemic. While this distinction between ontic and epistemic explanation originates with Salmon, the ideas have changed in the modern debate on mechanistic explanation, where the frame of the debate is changing. I will explore what Bechtel and Craver’s claims mean, and argue that good mechanistic explanations must satisfy both ontic and epistemic normative constraints on what is a good explanation. I will argue for ontic constraints by drawing (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Visual explanations prioritize functional properties at the expense of visual fidelity.Holly Huey, Xuanchen Lu, Caren M. Walker & Judith E. Fan - 2023 - Cognition 236 (C):105414.
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploring the Complexity of Students’ Scientific Explanations and Associated Nature of Science Views Within a Place-Based Socioscientific Issue Context.Benjamin C. Herman, David C. Owens, Robert T. Oertli, Laura A. Zangori & Mark H. Newton - 2019 - Science & Education 28 (3-5):329-366.
    In addition to considering sociocultural, political, economic, and ethical factors, effectively engaging socioscientific issues requires that students understand and apply scientific explanations and the nature of science. Promoting such understandings can be achieved through immersing students in authentic real-world contexts where the SSI impacts occur and teaching those students about how scientists comprehend, research, and debate those SSI. This triangulated mixed-methods investigation explored how 60 secondary students’ trophic cascade explanations changed through their experiencing place-based SSI instruction focused on the Yellowstone (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation