Switch to: Citations

Add references

You must login to add references.
  1. End extensions of models of linearly bounded arithmetic.Domenico Zambella - 1997 - Annals of Pure and Applied Logic 88 (2-3):263-277.
    We show that every model of IΔ0 has an end extension to a model of a theory where log-space computable function are formalizable. We also show the existence of an isomorphism between models of IΔ0 and models of linear arithmetic LA.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The strength of sharply bounded induction requires M S P.Sedki Boughattas & Leszek Aleksander Kołodziejczyk - 2010 - Annals of Pure and Applied Logic 161 (4):504-510.
    We show that the arithmetical theory -INDx5, formalized in the language of Buss, i.e. with x/2 but without the MSP function x/2y, does not prove that every nontrivial divisor of a power of 2 is even. It follows that this theory proves neither NP=coNP nor.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The strength of sharply bounded induction.Emil Jeřábek - 2006 - Mathematical Logic Quarterly 52 (6):613-624.
    We prove that the sharply bounded arithmetic T02 in a language containing the function symbol ⌊x /2y⌋ is equivalent to PV1.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On End‐Extensions of Models of ¬exp.Fernando Ferreira - 1996 - Mathematical Logic Quarterly 42 (1):1-18.
    Every model of IΔ0 is the tally part of a model of the stringlanguage theory Th-FO . We show how to “smoothly” introduce in Th-FO the binary length function, whereby it is possible to make exponential assumptions in models of Th-FO. These considerations entail that every model of IΔ0 + ¬exp is a proper initial segment of a model of Th-FO and that a modicum of bounded collection is true in these models.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A proof-theoretic analysis of collection.Lev D. Beklemishev - 1998 - Archive for Mathematical Logic 37 (5-6):275-296.
    By a result of Paris and Friedman, the collection axiom schema for $\Sigma_{n+1}$ formulas, $B\Sigma_{n+1}$ , is $\Pi_{n+2}$ conservative over $I\Sigma_n$ . We give a new proof-theoretic proof of this theorem, which is based on a reduction of $B\Sigma_n$ to a version of collection rule and a subsequent analysis of this rule via Herbrand's theorem. A generalization of this method allows us to improve known results on reflection principles for $B\Sigma_n$ and to answer some technical questions left open by Sieg (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Binary models generated by their tally part.Fernando Ferreira - 1994 - Archive for Mathematical Logic 33 (4):283-289.
    We introduce a class of models of the bounded arithmetic theoryPV n . These models, which are generated by their tally part, have a curious feature: they have end-extensions or satisfyB∑ n b only in case they are closed under exponentiation. As an application, we show that if then the polynomial hierarchy does not collapse.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • On axiom schemes for T-provably $${\Delta_{1}}$$ Δ 1 formulas.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2014 - Archive for Mathematical Logic 53 (3):327-349.
    This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are $${\Delta_1}$$ provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether $${I\Delta_0 + \neg \mathit{exp}}$$ implies $${B\Sigma_1}$$ to a purely recursion-theoretic question.
    Download  
     
    Export citation  
     
    Bookmark   2 citations