Switch to: Citations

Add references

You must login to add references.
  1. Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
    LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives ¬ and $\bigwedge, \bigvee$. Then for every d ≥ 0 and n ≥ 2, there is a set Td n of depth d sequents of total size O which are refutable in LK by depth d + 1 proof of size exp) but such that every depth d refutation must have the size at least exp). The sets Td n express a weaker form of the pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Propositional proof systems, the consistency of first order theories and the complexity of computations.Jan Krajíček & Pavel Pudlák - 1989 - Journal of Symbolic Logic 54 (3):1063-1079.
    We consider the problem about the length of proofs of the sentences $\operatorname{Con}_S(\underline{n})$ saying that there is no proof of contradiction in S whose length is ≤ n. We show the relation of this problem to some problems about propositional proof systems.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The relative efficiency of propositional proof systems.Stephen A. Cook & Robert A. Reckhow - 1979 - Journal of Symbolic Logic 44 (1):36-50.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Mathematical Logic Quarterly 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Provability of the pigeonhole principle and the existence of infinitely many primes.J. B. Paris, A. J. Wilkie & A. R. Woods - 1988 - Journal of Symbolic Logic 53 (4):1235-1244.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations