Switch to: References

Add citations

You must login to add citations.
  1. Audiences in argumentation frameworks.Trevor J. M. Bench-Capon, Sylvie Doutre & Paul E. Dunne - 2007 - Artificial Intelligence 171 (1):42-71.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Computational properties of argument systems satisfying graph-theoretic constraints.Paul E. Dunne - 2007 - Artificial Intelligence 171 (10-15):701-729.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Functional interpretations of feasibly constructive arithmetic.Stephen Cook & Alasdair Urquhart - 1993 - Annals of Pure and Applied Logic 63 (2):103-200.
    A notion of feasible function of finite type based on the typed lambda calculus is introduced which generalizes the familiar type 1 polynomial-time functions. An intuitionistic theory IPVω is presented for reasoning about these functions. Interpretations for IPVω are developed both in the style of Kreisel's modified realizability and Gödel's Dialectica interpretation. Applications include alternative proofs for Buss's results concerning the classical first-order system S12 and its intuitionistic counterpart IS12 as well as proofs of some of Buss's conjectures concerning IS12, (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Informal proof, formal proof, formalism.Alan Weir - 2016 - Review of Symbolic Logic 9 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Two party immediate response disputes: Properties and efficiency.Paul E. Dunne & T. J. M. Bench-Capon - 2003 - Artificial Intelligence 149 (2):221-250.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Are tableaux an improvement on truth-tables?Marcello D'Agostino - 1992 - Journal of Logic, Language and Information 1 (3):235-252.
    We show that Smullyan's analytic tableaux cannot p-simulate the truth-tables. We identify the cause of this computational breakdown and relate it to an underlying semantic difficulty which is common to the whole tradition originating in Gentzen's sequent calculus, namely the dissonance between cut-free proofs and the Principle of Bivalence. Finally we discuss some ways in which this principle can be built into a tableau-like method without affecting its analytic nature.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Incompleteness in the Finite Domain.Pavel Pudlák - 2017 - Bulletin of Symbolic Logic 23 (4):405-441.
    Motivated by the problem of finding finite versions of classical incompleteness theorems, we present some conjectures that go beyond NP ≠ coNP. These conjectures formally connect computational complexity with the difficulty of proving some sentences, which means that high computational complexity of a problem associated with a sentence implies that the sentence is not provable in a weak theory, or requires a long proof. Another reason for putting forward these conjectures is that some results in proof complexity seem to be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rationality and maximal consistent sets for a fragment of ASPIC + without undercut.Jesse Heyninck & Christian Straßer - 2021 - Argument and Computation 12 (1):3-47.
    Structured argumentation formalisms, such as ASPIC +, offer a formal model of defeasible reasoning. Usually such formalisms are highly parametrized and modular in order to provide a unifying framework in which different forms of reasoning can be expressed. This generality comes at the price that, in their most general form, formalisms such as ASPIC + do not satisfy important rationality postulates, such as non-interference. Similarly, links to other forms of knowledge representation, such as reasoning with maximal consistent sets of rules, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpolants, cut elimination and flow graphs for the propositional calculus.Alessandra Carbone - 1997 - Annals of Pure and Applied Logic 83 (3):249-299.
    We analyse the structure of propositional proofs in the sequent calculus focusing on the well-known procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing the flow of formulas in it . We show some general facts about logical graphs such as acyclicity of cut-free proofs and acyclicity of contraction-free proofs , and we give a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Non-transitive Correspondence Analysis.Yaroslav Petrukhin & Vasily Shangin - 2023 - Journal of Logic, Language and Information 32 (2):247-273.
    The paper’s novelty is in combining two comparatively new fields of research: non-transitive logic and the proof method of correspondence analysis. To be more detailed, in this paper the latter is adapted to Weir’s non-transitive trivalent logic \({\mathbf{NC}}_{\mathbf{3}}\). As a result, for each binary extension of \({\mathbf{NC}}_{\mathbf{3}}\), we present a sound and complete Lemmon-style natural deduction system. Last, but not least, we stress the fact that Avron and his co-authors’ general method of obtaining _n_-sequent proof systems for any _n_-valent logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propositional consistency proofs.Samuel R. Buss - 1991 - Annals of Pure and Applied Logic 52 (1-2):3-29.
    Partial consistency statements can be expressed as polynomial-size propositional formulas. Frege proof systems have polynomial-size partial self-consistency proofs. Frege proof systems have polynomial-size proofs of partial consistency of extended Frege proof systems if and only if Frege proof systems polynomially simulate extended Frege proof systems. We give a new proof of Reckhow's theorem that any two Frege proof systems p-simulate each other. The proofs depend on polynomial size propositional formulas defining the truth of propositional formulas. These are already known to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Propositional proof systems based on maximum satisfiability.Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Antonio Morgado & Joao Marques-Silva - 2021 - Artificial Intelligence 300 (C):103552.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Substitution Frege and extended Frege proof systems in non-classical logics.Emil Jeřábek - 2009 - Annals of Pure and Applied Logic 159 (1-2):1-48.
    We investigate the substitution Frege () proof system and its relationship to extended Frege () in the context of modal and superintuitionistic propositional logics. We show that is p-equivalent to tree-like , and we develop a “normal form” for -proofs. We establish connections between for a logic L, and for certain bimodal expansions of L.We then turn attention to specific families of modal and si logics. We prove p-equivalence of and for all extensions of , all tabular logics, all logics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege systems for extensible modal logics.Emil Jeřábek - 2006 - Annals of Pure and Applied Logic 142 (1):366-379.
    By a well-known result of Cook and Reckhow [S.A. Cook, R.A. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic 44 36–50; R.A. Reckhow, On the lengths of proofs in the propositional calculus, Ph.D. Thesis, Department of Computer Science, University of Toronto, 1976], all Frege systems for the classical propositional calculus are polynomially equivalent. Mints and Kojevnikov [G. Mints, A. Kojevnikov, Intuitionistic Frege systems are polynomially equivalent, Zapiski Nauchnyh Seminarov POMI 316 129–146] have recently shown p-equivalence of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An exponential separation between the parity principle and the pigeonhole principle.Paul Beame & Toniann Pitassi - 1996 - Annals of Pure and Applied Logic 80 (3):195-228.
    The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponential-size bounded-depth Frege proofs. Ajtai previously showed that the parity principle does not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On theories of bounded arithmetic for NC 1.Emil Jeřábek - 2011 - Annals of Pure and Applied Logic 162 (4):322-340.
    We develop an arithmetical theory and its variant , corresponding to “slightly nonuniform” . Our theories sit between and , and allow evaluation of log-depth bounded fan-in circuits under limited conditions. Propositional translations of -formulas provable in admit L-uniform polynomial-size Frege proofs.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the power of clause-learning SAT solvers as resolution engines.Knot Pipatsrisawat & Adnan Darwiche - 2011 - Artificial Intelligence 175 (2):512-525.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Automatic proof generation in an axiomatic system for $\mathsf{CPL}$ by means of the method of Socratic proofs.Aleksandra Grzelak & Dorota Leszczyńska-Jasion - 2018 - Logic Journal of the IGPL 26 (1):109-148.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The complexity of propositional proofs.Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantified propositional calculus and a second-order theory for NC1.Stephen Cook & Tsuyoshi Morioka - 2005 - Archive for Mathematical Logic 44 (6):711-749.
    Let H be a proof system for quantified propositional calculus (QPC). We define the Σqj-witnessing problem for H to be: given a prenex Σqj-formula A, an H-proof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the Σq1-witnessing problems for the systems G*1and G1 are complete for polynomial time and PLS (polynomial local search), respectively. We introduce and study the systems G*0 and G0, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Tautologies from pseudo-random generators.Jan Krajíček - 2001 - Bulletin of Symbolic Logic 7 (2):197-212.
    We consider tautologies formed form a pseudo-random number generator, defined in Krajicek [11] and in Alekhnovich et al. [2]. We explain a strategy of proving their hardness for Extended Frege systems via a conjecture about bounded arithmetic formulated in Krajicek [11]. Further we give a purely finitary statement, in the form of a hardness condition imposed on a function, equivalent to the conjecture. This is accompanied by a brief explanation, aimed at non-specialists, of the relation between prepositional proof complexity and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A remark on pseudo proof systems and hard instances of the satisfiability problem.Jan Maly & Moritz Müller - 2018 - Mathematical Logic Quarterly 64 (6):418-428.
    We link two concepts from the literature, namely hard sequences for the satisfiability problem sat and so‐called pseudo proof systems proposed for study by Krajíček. Pseudo proof systems are elements of a particular nonstandard model constructed by forcing with random variables. We show that the existence of mad pseudo proof systems is equivalent to the existence of a randomized polynomial time procedure with a highly restrictive use of randomness which produces satisfiable formulas whose satisfying assignments are probably hard to find.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rationality and maximal consistent sets for a fragment of ASPIC + without undercut.Gabriella Pigozzi & Srdjan Vesic - 2021 - Argument and Computation 12 (1):3-47.
    Structured argumentation formalisms, such as ASPIC +, offer a formal model of defeasible reasoning. Usually such formalisms are highly parametrized and modular in order to provide a unifying framework in which different forms of reasoning can be expressed. This generality comes at the price that, in their most general form, formalisms such as ASPIC + do not satisfy important rationality postulates, such as non-interference. Similarly, links to other forms of knowledge representation, such as reasoning with maximal consistent sets of rules, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Short propositional refutations for dense random 3CNF formulas.Sebastian Müller & Iddo Tzameret - 2014 - Annals of Pure and Applied Logic 165 (12):1864-1918.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some remarks on lengths of propositional proofs.Samuel R. Buss - 1995 - Archive for Mathematical Logic 34 (6):377-394.
    We survey the best known lower bounds on symbols and lines in Frege and extended Frege proofs. We prove that in minimum length sequent calculus proofs, no formula is generated twice or used twice on any single branch of the proof. We prove that the number of distinct subformulas in a minimum length Frege proof is linearly bounded by the number of lines. Depthd Frege proofs ofm lines can be transformed into depthd proofs ofO(m d+1) symbols. We show that renaming (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof complexity of substructural logics.Raheleh Jalali - 2021 - Annals of Pure and Applied Logic 172 (7):102972.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert-style axiomatization of first-degree entailment and a family of its extensions.Yaroslav Shramko - 2021 - Annals of Pure and Applied Logic 172 (9):103011.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Duplication of directed graphs and exponential blow up of proofs.A. Carbone - 1999 - Annals of Pure and Applied Logic 100 (1-3):1-67.
    We develop a combinatorial model to study the evolution of graphs underlying proofs during the process of cut elimination. Proofs are two-dimensional objects and differences in the behavior of their cut elimination can often be accounted for by differences in their two-dimensional structure. Our purpose is to determine geometrical conditions on the graphs of proofs to explain the expansion of the size of proofs after cut elimination. We will be concerned with exponential expansion and we give upper and lower bounds (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sufficient conditions for cut elimination with complexity analysis.João Rasga - 2007 - Annals of Pure and Applied Logic 149 (1-3):81-99.
    Sufficient conditions for first-order-based sequent calculi to admit cut elimination by a Schütte–Tait style cut elimination proof are established. The worst case complexity of the cut elimination is analysed. The obtained upper bound is parameterized by a quantity related to the calculus. The conditions are general enough to be satisfied by a wide class of sequent calculi encompassing, among others, some sequent calculi presentations for the first order and the propositional versions of classical and intuitionistic logic, classical and intuitionistic modal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Partially definable forcing and bounded arithmetic.Albert Atserias & Moritz Müller - 2015 - Archive for Mathematical Logic 54 (1):1-33.
    We describe a method of forcing against weak theories of arithmetic and its applications in propositional proof complexity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cutting planes, connectivity, and threshold logic.Samuel R. Buss & Peter Clote - 1996 - Archive for Mathematical Logic 35 (1):33-62.
    Originating from work in operations research the cutting plane refutation systemCP is an extension of resolution, where unsatisfiable propositional logic formulas in conjunctive normal form are recognized by showing the non-existence of boolean solutions to associated families of linear inequalities. Polynomial sizeCP proofs are given for the undirecteds-t connectivity principle. The subsystemsCP q ofCP, forq≥2, are shown to be polynomially equivalent toCP, thus answering problem 19 from the list of open problems of [8]. We present a normal form theorem forCP (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the proof complexity of the nisan–wigderson generator based on a hard np ∩ conp function.Jan Krajíček - 2011 - Journal of Mathematical Logic 11 (1):11-27.
    Let g be a map defined as the Nisan–Wigderson generator but based on an NP ∩ coNP -function f. Any string b outside the range of g determines a propositional tautology τb expressing this fact. Razborov [27] has conjectured that if f is hard on average for P/poly then these tautologies have no polynomial size proofs in the Extended Frege system EF. We consider a more general Statement that the tautologies have no polynomial size proofs in any propositional proof system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Resolution over linear equations and multilinear proofs.Ran Raz & Iddo Tzameret - 2008 - Annals of Pure and Applied Logic 155 (3):194-224.
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using interpolation we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on interpolants (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Several notes on the power of Gomory–Chvátal cuts.Edward A. Hirsch & Arist Kojevnikov - 2006 - Annals of Pure and Applied Logic 141 (3):429-436.
    We prove that the Cutting Plane proof system based on Gomory–Chvátal cuts polynomially simulates the lift-and-project system with integer coefficients written in unary. The restriction on the coefficients can be omitted when using Krajíček’s cut-free Gentzen-style extension of both systems. We also prove that Tseitin tautologies have short proofs in this extension.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Boolean programs and quantified propositional proof systems.Stephen Cook & Michael Soltys - 1999 - Bulletin of the Section of Logic 28 (3):119-129.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Looking From The Inside And From The Outside.A. Carbone & S. Semmes - 2000 - Synthese 125 (3):385-416.
    Many times in mathematics there is a natural dichotomy betweendescribing some object from the inside and from the outside. Imaginealgebraic varieties for instance; they can be described from theoutside as solution sets of polynomial equations, but one can also tryto understand how it is for actual points to move around inside them,perhaps to parameterize them in some way. The concept of formalproofs has the interesting feature that it provides opportunities forboth perspectives. The inner perspective has been largely overlooked,but in fact (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bounded-depth Frege complexity of Tseitin formulas for all graphs.Nicola Galesi, Dmitry Itsykson, Artur Riazanov & Anastasia Sofronova - 2023 - Annals of Pure and Applied Logic 174 (1):103166.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the proof complexity of logics of bounded branching.Emil Jeřábek - 2023 - Annals of Pure and Applied Logic 174 (1):103181.
    Download  
     
    Export citation  
     
    Bookmark  
  • Canonical proof nets for classical logic.Richard McKinley - 2013 - Annals of Pure and Applied Logic 164 (6):702-732.
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that there should be a canonical function from sequent proofs to proof nets, it should be possible to check the correctness of a net (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (14 other versions)2010 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '10.Uri Abraham & Ted Slaman - 2011 - Bulletin of Symbolic Logic 17 (2):272-329.
    Download  
     
    Export citation  
     
    Bookmark  
  • 2004 Annual Meeting of the Association for Symbolic Logic.Sergei Artemov - 2005 - Bulletin of Symbolic Logic 11 (1):92-119.
    Download  
     
    Export citation  
     
    Bookmark  
  • Plausibly hard combinatorial tautologies.Jeremy Avigad - manuscript
    We present a simple propositional proof system which consists of a single axiom schema and a single rule, and use this system to construct a sequence of combinatorial tautologies that, when added to any Frege system, p-simulates extended-Frege systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Polynomial calculus for optimization.Ilario Bonacina, Maria Luisa Bonet & Jordi Levy - 2024 - Artificial Intelligence 337 (C):104208.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quasipolynomial Size Frege Proofs of Frankl’s Theorem on the Trace of Sets.James Aisenberg, Maria Luisa Bonet & Sam Buss - 2016 - Journal of Symbolic Logic 81 (2):687-710.
    We extend results of Bonet, Buss and Pitassi on Bondy’s Theorem and of Nozaki, Arai and Arai on Bollobás’ Theorem by proving that Frankl’s Theorem on the trace of sets has quasipolynomial size Frege proofs. For constant values of the parametert, we prove that Frankl’s Theorem has polynomial size AC0-Frege proofs from instances of the pigeonhole principle.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative efficiency of propositional proof systems: resolution vs. cut-free LK.Noriko H. Arai - 2000 - Annals of Pure and Applied Logic 104 (1-3):3-16.
    Resolution and cut-free LK are the most popular propositional systems used for logical automated reasoning. The question whether or not resolution and cut-free LK have the same efficiency on the system of CNF formulas has been asked and studied since 1960 425–467). It was shown in Cook and Reckhow, J. Symbolic Logic 44 36–50 that tree resolution has super-polynomial speed-up over cut-free LK. Naturally, the current issue is whether or not resolution and cut-free LK expressed as directed acyclic graphs have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Do there exist complete sets for promise classes?Olaf Beyersdorff & Zenon Sadowski - 2011 - Mathematical Logic Quarterly 57 (6):535-550.
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class equation image?For concrete languages L and concrete promise classes equation image , these questions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new characterizations for Q1 and Q2 that apply to almost all promise classes equation image and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof complexity of propositional default logic.Olaf Beyersdorff, Arne Meier, Sebastian Müller, Michael Thomas & Heribert Vollmer - 2011 - Archive for Mathematical Logic 50 (7-8):727-742.
    Default logic is one of the most popular and successful formalisms for non-monotonic reasoning. In 2002, Bonatti and Olivetti introduced several sequent calculi for credulous and skeptical reasoning in propositional default logic. In this paper we examine these calculi from a proof-complexity perspective. In particular, we show that the calculus for credulous reasoning obeys almost the same bounds on the proof size as Gentzen’s system LK. Hence proving lower bounds for credulous reasoning will be as hard as proving lower bounds (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation