Switch to: Citations

Add references

You must login to add references.
  1. The mathematics of metamathematics.Helena Rasiowa - 1963 - Warszawa,: Państwowe Wydawn. Naukowe. Edited by Roman Sikorski.
    Download  
     
    Export citation  
     
    Bookmark   195 citations  
  • The Algebra of Topology.J. C. C. Mckinsey & Alfred Tarski - 1944 - Annals of Mathematics, Second Series 45:141-191.
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Products of modal logics, part 1.D. Gabbay & V. Shehtman - 1998 - Logic Journal of the IGPL 6 (1):73-146.
    The paper studies many-dimensional modal logics corresponding to products of Kripke frames. It proves results on axiomatisability, the finite model property and decidability for product logics, by applying a rather elaborated modal logic technique: p-morphisms, the finite depth method, normal forms, filtrations. Applications to first order predicate logics are considered too. The introduction and the conclusion contain a discussion of many related results and open problems in the area.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • (1 other version)A solution of the decision problem for the Lewis systems s2 and s4, with an application to topology.J. C. C. McKinsey - 1941 - Journal of Symbolic Logic 6 (4):117-134.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Extensions of the Lewis system S5.Schiller Joe Scroggs - 1951 - Journal of Symbolic Logic 16 (2):112-120.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)The lattice of modal logics: An algebraic investigation.W. J. Blok - 1980 - Journal of Symbolic Logic 45 (2):221-236.
    Modal logics are studied in their algebraic disguise of varieties of so-called modal algebras. This enables us to apply strong results of a universal algebraic nature, notably those obtained by B. Jonsson. It is shown that the degree of incompleteness with respect to Kripke semantics of any modal logic containing the axiom □ p → p or containing an axiom of the form $\square^mp \leftrightarrow\square^{m + 1}p$ for some natural number m is 2 ℵ 0 . Furthermore, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Multimo dal Logics of Products of Topologies.J. Van Benthem, G. Bezhanishvili, B. Ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369 - 392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion ${\bf S4}\oplus {\bf S4}$ . We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies. We prove that both of these logics are complete for the product of rational numbers ${\Bbb Q}\times {\Bbb Q}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Multimo dal logics of products of topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The topological product of s4 and S.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊗ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations