Switch to: Citations

Add references

You must login to add references.
  1. Superstable fields and groups.G. Cherlin - 1980 - Annals of Mathematical Logic 18 (3):227.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Generic structures and simple theories.Z. Chatzidakis & A. Pillay - 1998 - Annals of Pure and Applied Logic 95 (1-3):71-92.
    We study structures equipped with generic predicates and/or automorphisms, and show that in many cases we obtain simple theories. We also show that a bounded PAC field is simple. 1998 Published by Elsevier Science B.V. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Laforte, G., see Downey, R.T. Arai, Z. Chatzidakis & A. Pillay - 1998 - Annals of Pure and Applied Logic 95 (1-3):287.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Minimal fields.Frank Wagner - 2000 - Journal of Symbolic Logic 65 (4):1833-1835.
    A minimal field of non-zero characteristic is algebraically closed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Properties and Consequences of Thorn-Independence.Alf Onshuus - 2006 - Journal of Symbolic Logic 71 (1):1 - 21.
    We develop a new notion of independence (þ-independence, read "thorn"-independence) that arises from a family of ranks suggested by Scanlon (þ-ranks). We prove that in a large class of theories (including simple theories and o-minimal theories) this notion has many of the properties needed for an adequate geometric structure. We prove that þ-independence agrees with the usual independence notions in stable, supersimple and o-minimal theories. Furthermore, we give some evidence that the equivalence between forking and þ-forking in simple theories might (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Superrosy dependent groups having finitely satisfiable generics.Clifton Ealy, Krzysztof Krupiński & Anand Pillay - 2008 - Annals of Pure and Applied Logic 151 (1):1-21.
    We develop a basic theory of rosy groups and we study groups of small Uþ-rank satisfying NIP and having finitely satisfiable generics: Uþ-rank 1 implies that the group is abelian-by-finite, Uþ-rank 2 implies that the group is solvable-by-finite, Uþ-rank 2, and not being nilpotent-by-finite implies the existence of an interpretable algebraically closed field.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Characterizing Rosy Theories.Clifton Ealy & Alf Onshuus - 2007 - Journal of Symbolic Logic 72 (3):919 - 940.
    We examine several conditions, either the existence of a rank or a particular property of þ-forking that suggest the existence of a well-behaved independence relation, and determine the consequences of each of these conditions towards the rosiness of the theory. In particular we show that the existence of an ordinal valued equivalence relation rank is a (necessary and) sufficient condition for rosiness.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Fields interpretable in superrosy groups with NIP (the non-solvable case).Krzysztof Krupiński - 2010 - Journal of Symbolic Logic 75 (1):372-386.
    Let G be a group definable in a monster model $\germ{C}$ of a rosy theory satisfying NIP. Assume that G has hereditarily finitely satisfiable generics and 1 < U þ (G) < ∞. We prove that if G acts definably on a definable set of U þ -rank 1, then, under some general assumption about this action, there is an infinite field interpretable in $\germ{C}$ . We conclude that if G is not solvable-by-finite and it acts faithfully and definably on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation