Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Model Companions of for Stable T.John T. Baldwin & Saharon Shelah - 2001 - Notre Dame Journal of Formal Logic 42 (3):129-142.
    We introduce the notion T does not omit obstructions. If a stable theory does not admit obstructions then it does not have the finite cover property (nfcp). For any theory T, form a new theory by adding a new unary function symbol and axioms asserting it is an automorphism. The main result of the paper asserts the following: If T is a stable theory, T does not admit obstructions if and only if has a model companion. The proof involves some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ages of Expansions of ω-Categorical Structures.A. Ivanov & K. Majcher - 2007 - Notre Dame Journal of Formal Logic 48 (3):371-380.
    The age of a structure M is the set of all isomorphism types of finite substructures of M. We study ages of generic expansions of ω-stable ω-categorical structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Properties of forking in {$ømega$}-free pseudo-algebraically closed fields.Zoé Chatzidakis - 2002 - Journal of Symbolic Logic 67 (3):957-996.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Generic variations of models of T.Andreas Baudisch - 2002 - Journal of Symbolic Logic 67 (3):1025-1038.
    Let T be a model-complete theory that eliminates the quantifier $\exists^\infty x$ . For T we construct a theory T+ such that any element in a model of T+ determines a model of T. We show that T+ has a model companion T1. We can iterate the construction. The produced theories are investigated.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Generic Expansions of Geometric Theories.Somaye Jalili, Massoud Pourmahdian & Nazanin Roshandel Tavana - forthcoming - Journal of Symbolic Logic:1-22.
    As a continuation of ideas initiated in [19], we study bi-colored (generic) expansions of geometric theories in the style of the Fraïssé–Hrushovski construction method. Here we examine that the properties $NTP_{2}$, strongness, $NSOP_{1}$, and simplicity can be transferred to the expansions. As a consequence, while the corresponding bi-colored expansion of a red non-principal ultraproduct of p-adic fields is $NTP_{2}$, the expansion of algebraically closed fields with generic automorphism is a simple theory. Furthermore, these theories are strong with $\operatorname {\mathrm {bdn}}(\text (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pac Structures as Invariants of Finite Group Actions.Daniel Max Hoffmann & Piotr Kowalski - forthcoming - Journal of Symbolic Logic:1-36.
    We study model theory of actions of finite groups on substructures of a stable structure. We give an abstract description of existentially closed actions as above in terms of invariants and PAC structures. We show that if the corresponding PAC property is first order, then the theory of such actions has a model companion. Then, we analyze some particular theories of interest (mostly various theories of fields of positive characteristic) and show that in all the cases considered the PAC property (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Vector spaces with a dense-codense generic submodule.Alexander Berenstein, Christian D'Elbée & Evgueni Vassiliev - 2024 - Annals of Pure and Applied Logic 175 (7):103442.
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary equivalence theorem for Pac structures.Jan Dobrowolski, Daniel Max Hoffmann & Junguk Lee - 2020 - Journal of Symbolic Logic 85 (4):1467-1498.
    We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Model theoretic dynamics in Galois fashion.Daniel Max Hoffmann - 2019 - Annals of Pure and Applied Logic 170 (7):755-804.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Generic expansion and Skolemization in NSOP 1 theories.Alex Kruckman & Nicholas Ramsey - 2018 - Annals of Pure and Applied Logic 169 (8):755-774.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Generic Expansions of Countable Models.Silvia Barbina & Domenico Zambella - 2012 - Notre Dame Journal of Formal Logic 53 (4):511-523.
    We compare two different notions of generic expansions of countable saturated structures. One kind of genericity is related to existential closure, and another is defined via topological properties and Baire category theory. The second type of genericity was first formulated by Truss for automorphisms. We work with a later generalization, due to Ivanov, to finite tuples of predicates and functions. Let $N$ be a countable saturated model of some complete theory $T$ , and let $(N,\sigma)$ denote an expansion of $N$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Stable Definability and Generic Relations.Byunghan Kim & Rahim Moosa - 2007 - Journal of Symbolic Logic 72 (4):1163 - 1176.
    An amalgamation base p in a simple theory is stably definable if its canonical base is interdefinable with the set of canonical parameters for the ϕ-definitions of p as ϕ ranges through all stable formulae. A necessary condition for stably definability is given and used to produce an example of a supersimple theory with stable forking having types that are not stably definable. This answers negatively a question posed in [8]. A criterion for and example of a stably definable amalgamation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From stability to simplicity.Byunghan Kim & Anand Pillay - 1998 - Bulletin of Symbolic Logic 4 (1):17-36.
    §1. Introduction. In this report we wish to describe recent work on a class of first order theories first introduced by Shelah in [32], the simple theories. Major progress was made in the first author's doctoral thesis [17]. We will give a survey of this, as well as further works by the authors and others.The class of simple theories includes stable theories, but also many more, such as the theory of the random graph. Moreover, many of the theories of particular (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Model companions of theories with an automorphism.Hirotaka Kikyo - 2000 - Journal of Symbolic Logic 65 (3):1215-1222.
    For a theory T in L, T σ is the theory of the models of T with an automorphism σ. If T is an unstable model complete theory without the independence property, then T σ has no model companion. If T is an unstable model complete theory and T σ has the amalgamation property, then T σ has no model companion. If T is model complete and has the fcp, then T σ has no model completion.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Companionability characterization for the expansion of an o-minimal theory by a dense subgroup.Alexi Block Gorman - 2023 - Annals of Pure and Applied Logic 174 (10):103316.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the antichain tree property.JinHoo Ahn, Joonhee Kim & Junguk Lee - 2022 - Journal of Mathematical Logic 23 (2).
    In this paper, we investigate a new model theoretical tree property (TP), called the antichain tree property (ATP). We develop combinatorial techniques for ATP. First, we show that ATP is always witnessed by a formula in a single free variable, and for formulas, not having ATP is closed under disjunction. Second, we show the equivalence of ATP and [Formula: see text]-ATP, and provide a criterion for theories to have not ATP (being NATP). Using these combinatorial observations, we find algebraic examples (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Pseudofinite difference fields.Tingxiang Zou - 2019 - Journal of Mathematical Logic 19 (2):1950011.
    We study a family of ultraproducts of finite fields with the Frobenius automorphism in this paper. Their theories have the strict order property and TP2. But the coarse pseudofinite dimension of the definable sets is definable and integer-valued. Moreover, we establish a partial connection between coarse dimension and transformal transcendence degree in these difference fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • Existentially closed fields with finite group actions.Daniel M. Hoffmann & Piotr Kowalski - 2018 - Journal of Mathematical Logic 18 (1):1850003.
    We study algebraic and model-theoretic properties of existentially closed fields with an action of a fixed finite group. Such fields turn out to be pseudo-algebraically closed in a rather strong sense. We place this work in a more general context of the model theory of fields with a group scheme action.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Model Companions of $T_{\rm Aut}$ for Stable T.John T. Baldwin & Saharon Shelah - 2001 - Notre Dame Journal of Formal Logic 42 (3):129-142.
    We introduce the notion T does not omit obstructions. If a stable theory does not admit obstructions then it does not have the finite cover property . For any theory T, form a new theory $T_{\rm Aut}$ by adding a new unary function symbol and axioms asserting it is an automorphism. The main result of the paper asserts the following: If T is a stable theory, T does not admit obstructions if and only if $T_{\rm Aut}$ has a model companion. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • 2001 Annual Meeting of the Association for Symbolic Logic.Andre Scedrov - 2001 - Bulletin of Symbolic Logic 7 (3):420-435.
    Download  
     
    Export citation  
     
    Bookmark  
  • On PAC and Bounded Substructures of a Stable Structure.Anand Pillay & Dominika Polkowska - 2006 - Journal of Symbolic Logic 71 (2):460 - 472.
    We introduce and study the notions of a PAC-substructure of a stable structure, and a bounded substructure of an arbitrary substructure, generalizing [10]. We give precise definitions and equivalences, saying what it means for properties such as PAC to be first order, study some examples (such as differentially closed fields) in detail, relate the material to generic automorphisms, and generalize a "descent theorem" for pseudo-algebraically closed fields to the stable context. We also point out that the elementary invariants of pseudo-algebraically (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Automorphisms of Homogeneous Structures.A. Ivanov - 2005 - Notre Dame Journal of Formal Logic 46 (4):419-424.
    We give an example of a simple ω-categorical theory such that for any finite set of parameters the corresponding constant expansion does not satisfy the PAPA. We describe a wide class of homogeneous structures with generic automorphisms and show that some natural reducts of our example belong to this class.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Model theory of differential fields with finite group actions.Daniel Max Hoffmann & Omar León Sánchez - 2021 - Journal of Mathematical Logic 22 (1).
    Let G be a finite group. We explore the model-theoretic properties of the class of differential fields of characteristic zero in m commuting derivations equipped with a G-action by differential fie...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Superrosy fields and valuations.Krzysztof Krupiński - 2015 - Annals of Pure and Applied Logic 166 (3):342-357.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Extensions of ordered theories by generic predicates.Alfred Dolich, Chris Miller & Charles Steinhorn - 2013 - Journal of Symbolic Logic 78 (2):369-387.
    Given a theoryTextending that of dense linear orders without endpoints, in a language ℒ ⊇ {<}, we are interested in extensionsT′ ofTin languages extending ℒ by unary relation symbols that are each interpreted in models ofT′ as sets that are both dense and codense in the underlying sets of the models.There is a canonically “wild” example, namelyT= Th andT′ = Th. Recall thatTis o-minimal, and so every open set definable in any model ofThas only finitely many definably connected components. But (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieronymi - 2012 - Journal of Symbolic Logic 77 (1):111 - 121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generic Derivations on Algebraically Bounded Structures.Antongiulio Fornasiero & Giuseppina Terzo - forthcoming - Journal of Symbolic Logic:1-27.
    Let${\mathbb K}$be an algebraically bounded structure, and letTbe its theory. IfTis model complete, then the theory of${\mathbb K}$endowed with a derivation, denoted by$T^{\delta }$, has a model completion. Additionally, we prove that if the theoryTis stable/NIP then the model completion of$T^{\delta }$is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpolative fusions.Alex Kruckman, Chieu-Minh Tran & Erik Walsberg - 2020 - Journal of Mathematical Logic 21 (2):2150010.
    We define the interpolative fusion T∪∗ of a family i∈I of first-order theories over a common reduct T∩, a notion that generalizes many examples of random or generic structures in the model-theo...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Independence in generic incidence structures.Gabriel Conant & Alex Kruckman - 2019 - Journal of Symbolic Logic 84 (2):750-780.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forking, imaginaries, and other features of.Christian D’elbée - 2021 - Journal of Symbolic Logic 86 (2):669-700.
    We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called $\mathrm {ACFG}$. This theory was introduced in [16] as a new example of $\mathrm {NSOP}_{1}$ nonsimple theory. In this paper we describe more features of $\mathrm {ACFG}$, such as imaginaries. We also study various independence relations in $\mathrm {ACFG}$, such as Kim-independence or forking independence, and describe interactions between them.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Expansions of o-minimal structures by dense independent sets.Alfred Dolich, Chris Miller & Charles Steinhorn - 2016 - Annals of Pure and Applied Logic 167 (8):684-706.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The independence property in generalized dense pairs of structures.Alexander Berenstein, Alf Dolich & Alf Onshuus - 2011 - Journal of Symbolic Logic 76 (2):391 - 404.
    We provide a general theorem implying that for a (strongly) dependent theory T the theory of sufficiently well-behaved pairs of models of T is again (strongly) dependent. We apply the theorem to the case of lovely pairs of thorn-rank one theories as well as to a setting of dense pairs of first-order topological theories.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On perturbations of continuous structures.Itaï Ben Yaacov - 2008 - Journal of Mathematical Logic 8 (2):225-249.
    We give a general framework for the treatment of perturbations of types and structures in continuous logic, allowing to specify which parts of the logic may be perturbed. We prove that separable, elementarily equivalent structures which are approximately $aleph_0$-saturated up to arbitrarily small perturbations are isomorphic up to arbitrarily small perturbations. As a corollary, we obtain a Ryll-Nardzewski style characterisation of complete theories all of whose separable models are isomorphic up to arbitrarily small perturbations.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • 2010 North American Annual Meeting of the Association for Symbolic Logic.Reed Solomon - 2011 - Bulletin of Symbolic Logic 17 (1):127-154.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bi-colored expansions of geometric theories.S. Jalili, M. Pourmahdian & M. Khani - 2025 - Annals of Pure and Applied Logic 176 (2):103525.
    Download  
     
    Export citation  
     
    Bookmark  
  • Co-theory of sorted profinite groups for PAC structures.Daniel Max Hoffmann & Junguk Lee - 2023 - Journal of Mathematical Logic 23 (3).
    We achieve several results. First, we develop a variant of the theory of absolute Galois groups in the context of many sorted structures. Second, we provide a method for coding absolute Galois groups of structures, so they can be interpreted in some monster model with an additional predicate. Third, we prove the “Weak Independence Theorem” for pseudo-algebraically closed (PAC) substructures of an ambient structure with no finite cover property (nfcp) and the property [Formula: see text]. Fourth, we describe Kim-dividing in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Un critère simple.Thomas Blossier & Amador Martin-Pizarro - 2019 - Notre Dame Journal of Formal Logic 60 (4):639-663.
    Nous isolons des propriétés valables dans certaines théories de purs corps ou de corps munis d’opérateurs afin de montrer qu’une théorie est simple lorsque les clôtures définissables et algébriques sont contrôlées par une théorie stable associée.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weakly one-based geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2012 - Journal of Symbolic Logic 77 (2):392-422.
    We study the class of weakly locally modular geometric theories introduced in [4], a common generalization of the classes of linear SU-rank 1 and linear o-minimal theories. We find new conditions equivalent to weak local modularity: "weak one-basedness", absence of type definable "almost quasidesigns", and "generic linearity". Among other things, we show that weak one-basedness is closed under reducts. We also show that the lovely pair expansion of a non-trivial weakly one-based ω-categorical geometric theory interprets an infinite vector space over (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dp-Minimality: Basic Facts and Examples.Alfred Dolich, John Goodrick & David Lippel - 2011 - Notre Dame Journal of Formal Logic 52 (3):267-288.
    We study the notion of dp-minimality, beginning by providing several essential facts about dp-minimality, establishing several equivalent definitions for dp-minimality, and comparing dp-minimality to other minimality notions. The majority of the rest of the paper is dedicated to examples. We establish via a simple proof that any weakly o-minimal theory is dp-minimal and then give an example of a weakly o-minimal group not obtained by adding traces of externally definable sets. Next we give an example of a divisible ordered Abelian (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A monotonicity theorem for dp-minimal densely ordered groups.John Goodrick - 2010 - Journal of Symbolic Logic 75 (1):221-238.
    Dp-minimality is a common generalization of weak minimality and weak o-minimality. If T is a weakly o-minimal theory then it is dp-minimal (Fact 2.2), but there are dp-minimal densely ordered groups that are not weakly o-minimal. We introduce the even more general notion of inp-minimality and prove that in an inp-minimal densely ordered group, every definable unary function is a union of finitely many continuous locally monotonic functions (Theorem 3.2).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Pseudofinite difference fields and counting dimensions.Tingxiang Zou - 2021 - Journal of Mathematical Logic 21 (1):2050022.
    We study a family of ultraproducts of finite fields with the Frobenius automorphism in this paper. Their theories have the strict order property and TP2. But the coarse pseudofinite dimension of the definable sets is definable and integer-valued. Moreover, we also discuss the possible connection between coarse dimension and transformal transcendence degree in these difference fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability and classification of the theory of integers with primes.Itay Kaplan & Saharon Shelah - 2017 - Journal of Symbolic Logic 82 (3):1041-1050.
    We show that under Dickson’s conjecture about the distribution of primes in the natural numbers, the theory Th where Pr is a predicate for the prime numbers and their negations is decidable, unstable, and supersimple. This is in contrast with Th which is known to be undecidable by the works of Jockusch, Bateman, and Woods.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Simple stable homogeneous expansions of Hilbert spaces.Alexander Berenstein & Steven Buechler - 2004 - Annals of Pure and Applied Logic 128 (1-3):75-101.
    We study simplicity and stability in some large strongly homogeneous expansions of Hilbert spaces. Our approach to simplicity is that of Buechler and Lessmann 69). All structures we consider are shown to have built-in canonical bases.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The definable multiplicity property and generic automorphisms.Hirotaka Kikyo & Anand Pillay - 2000 - Annals of Pure and Applied Logic 106 (1-3):263-273.
    Let T be a strongly minimal theory with quantifier elimination. We show that the class of existentially closed models of T{“σ is an automorphism”} is an elementary class if and only if T has the definable multiplicity property, as long as T is a finite cover of a strongly minimal theory which does have the definable multiplicity property. We obtain cleaner results working with several automorphisms, and prove: the class of existentially closed models of T{“σi is an automorphism”: i=1,2} is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Theories without the tree property of the second kind.Artem Chernikov - 2014 - Annals of Pure and Applied Logic 165 (2):695-723.
    We initiate a systematic study of the class of theories without the tree property of the second kind — NTP2. Most importantly, we show: the burden is “sub-multiplicative” in arbitrary theories ; NTP2 is equivalent to the generalized Kimʼs lemma and to the boundedness of ist-weight; the dp-rank of a type in an arbitrary theory is witnessed by mutually indiscernible sequences of realizations of the type, after adding some parameters — so the dp-rank of a 1-type in any theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • On lovely pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
    We study the theory of lovely pairs of geometric structures, in particular o-minimal structures. We use the pairs to isolate a class of geometric structures called weakly locally modular which generalizes the class of linear structures in the settings of SU-rank one theories and o-minimal theories. For o-minimal theories, we use the Peterzil–Starchenko trichotomy theorem to characterize for a sufficiently general point, the local geometry around it in terms of the thorn U-rank of its type inside a lovely pair.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Supersimple structures with a dense independent subset.Alexander Berenstein, Juan Felipe Carmona & Evgueni Vassiliev - 2017 - Mathematical Logic Quarterly 63 (6):552-573.
    Based on the work done in [][] in the o‐minimal and geometric settings, we study expansions of models of a supersimple theory with a new predicate distiguishing a set of forking‐independent elements that is dense inside a partial type, which we call H‐structures. We show that any two such expansions have the same theory and that under some technical conditions, the saturated models of this common theory are again H‐structures. We prove that under these assumptions the expansion is supersimple and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic automorphisms with prescribed fixed fields.Bijan Afshordel - 2014 - Journal of Symbolic Logic 79 (4):985-1000.
    This article addresses the question which structures occur as fixed structures of stable structures with a generic automorphism. In particular we give a Galois theoretic characterization. Furthermore, we prove that any pseudofinite field is the fixed field of some model ofACFA, any one-free pseudo-differentially closed field of characteristic zero is the fixed field of some model ofDCFA, and that any one-free PAC field of finite degree of imperfection is the fixed field of some model ofSCFA.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Elimination of Imaginaries in Expansions of O-Minimal Structures by Generic Sets.Sergio Fratarcangeli - 2005 - Journal of Symbolic Logic 70 (4):1150 - 1160.
    Let TP be the theory obtained by adding a generic predicate to an o-minimal theory T. We prove that if T admits elimination of imaginaries, then TP also admits elimination of imaginaries.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Rank Not Only in Nsop Theories.Jan Dobrowolski & Daniel Max Hoffmann - forthcoming - Journal of Symbolic Logic:1-34.
    We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(\varphi (x,y),q(y)),$ where $\varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP $_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<\omega $ for any finite tuple of variables x and any Q, if $q\supseteq p$ is a Kim-forking extension of types, then $D_Q(q) (...)
    Download  
     
    Export citation  
     
    Bookmark