Switch to: Citations

Add references

You must login to add references.
  1. The method of hypersequents in the proof theory of propositional non-classical logics.Arnon Avron - 1977 - In Wilfrid Hodges (ed.), Logic. New York: Penguin Books. pp. 1-32.
    Until not too many years ago, all logics except classical logic (and, perhaps, intuitionistic logic too) were considered to be things esoteric. Today this state of a airs seems to have completely been changed. There is a growing interest in many types of nonclassical logics: modal and temporal logics, substructural logics, paraconsistent logics, non-monotonic logics { the list is long. The diversity of systems that have been proposed and studied is so great that a need is felt by many researchers (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • A proof-theoretical investigation of global intuitionistic (fuzzy) logic.Agata Ciabattoni - 2005 - Archive for Mathematical Logic 44 (4):435-457.
    We perform a proof-theoretical investigation of two modal predicate logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF. These logics were introduced by Takeuti and Titani to formulate an intuitionistic set theory and an intuitionistic fuzzy set theory together with their metatheories. Here we define analytic Gentzen style calculi for GI and GIF. Among other things, these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI and GIF.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpolation theorems for intuitionistic predicate logic.G. Mints - 2001 - Annals of Pure and Applied Logic 113 (1-3):225-242.
    Craig interpolation theorem implies that the derivability of X,X′ Y′ implies existence of an interpolant I in the common language of X and X′ Y′ such that both X I and I,X′ Y′ are derivable. For classical logic this extends to X,X′ Y,Y′, but for intuitionistic logic there are counterexamples. We present a version true for intuitionistic propositional logic, and more complicated version for the predicate case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness of global intuitionistic set theory.Satoko Titani - 1997 - Journal of Symbolic Logic 62 (2):506-528.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Globalization of intui tionistic set theory.Gaisi Takeuti & Satoko Titani - 1987 - Annals of Pure and Applied Logic 33 (C):195-211.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Propositional Mixed Logic: Its Syntax and Semantics.Karim Nour & Abir Nour - 2003 - Journal of Applied Non-Classical Logics 13 (3-4):377-390.
    In this paper, we present a propositional logic (called mixed logic) containing disjoint copies of minimal, intuitionistic and classical logics. We prove a completeness theorem for this logic with respect to a Kripke semantics. We establish some relations between mixed logic and minimal, intuitionistic and classical logics. We present at the end a sequent calculus version for this logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two types of multiple-conclusion systems.A. Avron - 1998 - Logic Journal of the IGPL 6 (5):695-718.
    Hypersequents are finite sets of ordinary sequents. We show that multiple-conclusion sequents and single-conclusion hypersequents represent two different natural methods of switching from a single-conclusion calculus to a multiple-conclusion one. The use of multiple-conclusion sequents corresponds to using a multiplicative disjunction, while the use of single-conclusion hypersequents corresponds to using an additive one. Moreover: each of the two methods is usually based on a different natural semantic idea and accordingly leads to a different class of algebraic structures. In the cases (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structured sequent calculi for combining intuitionistic and classical first-order logic.Paqui Lucio - 2000 - In Dov M. Gabbay & Maarten de Rijke (eds.), Frontiers of combining systems 2. Philadelphia, PA: Research Studies Press. pp. 88--104.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Basic Intuitionistic Logic of Proofs.Sergei Artemov & Rosalie Iemhoff - 2007 - Journal of Symbolic Logic 72 (2):439 - 451.
    The language of the basic logic of proofs extends the usual propositional language by forming sentences of the sort x is a proof of F for any sentence F. In this paper a complete axiomatization for the basic logic of proofs in Heyting Arithmetic HA was found.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical constants as punctuation marks.Kosta Došen - 1989 - Notre Dame Journal of Formal Logic 30 (3):362-381.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Integrating classical and intuitionistic type theory.Robert C. Flagg - 1986 - Annals of Pure and Applied Logic 32:27-51.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the unity of logic.Jean-Yves Girard - 1993 - Annals of Pure and Applied Logic 59 (3):201-217.
    We present a single sequent calculus common to classical, intuitionistic and linear logics. The main novelty is that classical, intuitionistic and linear logics appear as fragments, i.e. as particular classes of formulas and sequents. For instance, a proof of an intuitionistic formula A may use classical or linear lemmas without any restriction: but after cut-elimination the proof of A is wholly intuitionistic, what is superficially achieved by the subformula property and more deeply by a very careful treatment of structural rules. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A constructive analysis of RM.Arnon Avron - 1987 - Journal of Symbolic Logic 52 (4):939 - 951.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Interval semantics for tense logic: Some remarks. [REVIEW]I. L. Humberstone - 1979 - Journal of Philosophical Logic 8 (1):171 - 196.
    Download  
     
    Export citation  
     
    Bookmark   27 citations