Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Δ12-sets of reals.Jaime I. Ihoda & Saharon Shelah - 1989 - Annals of Pure and Applied Logic 42 (3):207-223.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
    We give characterizations for the sentences "Every $\Sigma^1_2$-set is measurable" and "Every $\Delta^1_2$-set is measurable" for various notions of measurability derived from well-known forcing partial orderings.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Generic trees.Otmar Spinas - 1995 - Journal of Symbolic Logic 60 (3):705-726.
    We continue the investigation of the Laver ideal ℓ 0 and Miller ideal m 0 started in [GJSp] and [GRShSp]; these are the ideals on the Baire space associated with Laver forcing and Miller forcing. We solve several open problems from these papers. The main result is the construction of models for $t , where add denotes the additivity coefficient of an ideal. For this we construct amoeba forcings for these forcings which do not add Cohen reals. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Set Theory: On the Structure of the Real Line.T. Bartoszyński & H. Judah - 1999 - Studia Logica 62 (3):444-445.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Veličković - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Velikovi - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations