Switch to: Citations

Add references

You must login to add references.
  1. Implications between strong large cardinal axioms.Richard Laver - 1997 - Annals of Pure and Applied Logic 90 (1-3):79-90.
    The rank-into-rank and stronger large cardinal axioms assert the existence of certain elementary embeddings. By the preservation of the large cardinal properties of the embeddings under certain operations, strong implications between various of these axioms are derived.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The well-foundedness of the Mitchell order.J. R. Steel - 1993 - Journal of Symbolic Logic 58 (3):931-940.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations