Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The iterability hierarchy above $${{\mathrm{\mathsf {I3}}}}$$ I 3.Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between \ and \, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The iterability hierarchy above I3. [REVIEW]Alessandro Andretta & Vincenzo Dimonte - 2019 - Archive for Mathematical Logic 58 (1-2):77-97.
    In this paper we introduce a new hierarchy of large cardinals between I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I3}}}}$$\end{document} and I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{\mathsf {I2}}}}$$\end{document}, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rank-into-rank hypotheses and the failure of GCH.Vincenzo Dimonte & Sy-David Friedman - 2014 - Archive for Mathematical Logic 53 (3-4):351-366.
    In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reflection of elementary embedding axioms on the L[Vλ+1] hierarchy.Richard Laver - 2001 - Annals of Pure and Applied Logic 107 (1-3):227-238.
    Say that the property Φ of a cardinal λ strongly implies the property Ψ. If and only if for every λ,Φ implies that Ψ and that for some λ′<λ,Ψ. Frequently in the hierarchy of large cardinal axioms, stronger axioms strongly imply weaker ones. Some strong implications are proved between axioms of the form “there is an elementary embedding j:Lα[Vλ+1]→Lα[Vλ+1] with ”.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Certain very large cardinals are not created in small forcing extensions.Richard Laver - 2007 - Annals of Pure and Applied Logic 149 (1-3):1-6.
    The large cardinal axioms of the title assert, respectively, the existence of a nontrivial elementary embedding j:Vλ→Vλ, the existence of such a j which is moreover , and the existence of such a j which extends to an elementary j:Vλ+1→Vλ+1. It is known that these axioms are preserved in passing from a ground model to a small forcing extension. In this paper the reverse directions of these preservations are proved. Also the following is shown : if V is a model (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Axiom I 0 and higher degree theory.Xianghui Shi - 2015 - Journal of Symbolic Logic 80 (3):970-1021.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Double helix in large large cardinals and iteration of elementary embeddings.Kentaro Sato - 2007 - Annals of Pure and Applied Logic 146 (2):199-236.
    We consider iterations of general elementary embeddings and, using this notion, point out helices of consistency-wise implications between large large cardinals.Up to now, large cardinal properties have been considered as properties which cannot be accessed by any weaker properties and it has been known that, with respect to this relation, they form a proper hierarchy. The helices we point out significantly change this situation: the same sequence of large cardinal properties occurs repeatedly, changing only the parameters.As results of our investigation (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Diagonal Prikry extensions.James Cummings & Matthew Foreman - 2010 - Journal of Symbolic Logic 75 (4):1383-1402.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The category of inner models.Peter Koepke - 2002 - Synthese 133 (1-2):275 - 303.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inverse limit reflection and the structure of L.Scott S. Cramer - 2015 - Journal of Mathematical Logic 15 (1):1550001.
    We extend the results of Laver on using inverse limits to reflect large cardinals of the form, there exists an elementary embedding Lα → Lα. Using these inverse limit reflection embeddings directly and by broadening the collection of U-representable sets, we prove structural results of L under the assumption that there exists an elementary embedding j : L → L. As a consequence we show the impossibility of a generalized inverse limit X-reflection result for X ⊆ Vλ+1, thus focusing the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations