Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Mathematical logic.Willard Van Orman Quine - 1951 - Cambridge,: Harvard University Press.
    INTRODUCTION MATHEMATICAL logic differs from the traditional formal logic so markedly in method, and so far surpasses it in power and subtlety, ...
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • The continuum of inductive methods.Rudolf Carnap - 1952 - [Chicago]: University of Chicago Press.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • (1 other version)Logical foundations of probability.Rudolf Carnap - 1950 - Chicago]: Chicago University of Chicago Press.
    APA PsycNET abstract: This is the first volume of a two-volume work on Probability and Induction. Because the writer holds that probability logic is identical with inductive logic, this work is devoted to philosophical problems concerning the nature of probability and inductive reasoning. The author rejects a statistical frequency basis for probability in favor of a logical relation between two statements or propositions. Probability "is the degree of confirmation of a hypothesis (or conclusion) on the basis of some given evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   881 citations  
  • (4 other versions)The logic of scientific discovery.Karl Raimund Popper - 1934 - New York: Routledge. Edited by Hutchinson Publishing Group.
    Described by the philosopher A.J. Ayer as a work of 'great originality and power', this book revolutionized contemporary thinking on science and knowledge. Ideas such as the now legendary doctrine of 'falsificationism' electrified the scientific community, influencing even working scientists, as well as post-war philosophy. This astonishing work ranks alongside The Open Society and Its Enemies as one of Popper's most enduring books and contains insights and arguments that demand to be read to this day.
    Download  
     
    Export citation  
     
    Bookmark   1195 citations  
  • (1 other version)Probability functions and their assumption sets — the singulary case.Hugues Leblanc - 1983 - Journal of Philosophical Logic 12 (4):379 - 402.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Logical Foundations of Probability.Rudolf Carnap - 1950 - Mind 62 (245):86-99.
    Download  
     
    Export citation  
     
    Bookmark   882 citations  
  • Alternatives to Standard first-order Semantics.Hugues Leblanc, D. Gabbay & F. Guenthner - 1989 - Journal of Symbolic Logic 54 (4):1483-1484.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On Carnap and Popper Probability Functions.Hugues Leblanc & Bas C. van Fraassen - 1979 - Journal of Symbolic Logic 44 (3):369 - 373.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probabilistic Semantics Objectified: II. Implication in Probabilistic Model Sets.Bas C. Van Fraassen - 1981 - Journal of Philosophical Logic 10 (4):495-510.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Epistemic Semantics Defended.Bas C. Van Fraassen - 1982 - Journal of Philosophical Logic 11 (4):463-464.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Two autonomous axiom systems for the calculus of probabilities.Karl R. Popper - 1955 - British Journal for the Philosophy of Science 6 (21):51-57.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • What price substitutivity? A note on probability theory.Hugues Leblanc - 1981 - Philosophy of Science 48 (2):317-322.
    Teddy Seidenfeld recently claimed that Kolmogorov's probability theory transgresses the Substitutivity Law. Underscoring the seriousness of Seidenfeld's charge, the author shows that (Popper's version of) the law, to wit: If (∀ D)(Pr(B,D)=Pr(C,D)), then Pr(A,B)=Pr(A,C), follows from just C1. 0≤ Pr(A,B)≤ 1 C2. Pr(A,A)=1 C3. Pr(A & B,C)=Pr(A,B & C)× Pr(B,C) C4. Pr(A & B,C)=Pr(B & A,C) C5. Pr(A,B & C)=Pr(A,C & B), five constraints on Pr of the most elementary and most basic sort.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Probabilistic Semantics for First‐Order Logic.Hugues Leblanc - 1979 - Mathematical Logic Quarterly 25 (32):497-509.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Probabilistic Semantics for First-Order Logic.Hugues Leblanc - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (32):497-509.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Deductive logic.Hugues Leblanc - 1972 - Boston,: Allyn & Bacon. Edited by William A. Wisdom.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Handbook of Philosophical Logic.[author unknown] - 1983 - .
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Probabilistic semantics objectified: II. Implication in probabilistic model sets. [REVIEW]Bas C. Fraassen - 1981 - Journal of Philosophical Logic 10 (4):495 - 510.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The British Journal for the Philosophy of Science | Vol 73, No 3.Karl R. Popper - 1955 - British Journal for the Philosophy of Science 6 (24):351-351.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Probability Theory, Intuitionism, Semantics and the Dutch Book Argument.Charles G. Morgan & Hugues Leblanc - 1983 - Notre Dame Journal of Formal Logic 24 (3):289-304.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Probabilistic semantics for intuitionistic logic.C. G. Morgan & H. Leblanc - 1983 - Notre Dame Journal of Formal Logic 24 (2):161-180.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Probabilistic Semantics for Formal Logic.Charles Morgan & Hugues Leblanc - 1983 - Notre Dame Journal of Formal Logic 24:161-180.
    Download  
     
    Export citation  
     
    Bookmark   7 citations