Switch to: Citations

Add references

You must login to add references.
  1. (4 other versions)The Logic of Scientific Discovery.Karl Popper - 1959 - Studia Logica 9:262-265.
    Download  
     
    Export citation  
     
    Bookmark   1547 citations  
  • Popper's 1955 Axiomatization of Absolute Probability.Hugues Leblanc - 1982 - Pacific Philosophical Quarterly 63 (2):133-145.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy of science: A personal report.Karl R. Popper - 1957 - In J. H. Muirhead (ed.), British Philosophy in the Mid-Century. George Allen and Unwin. pp. 182--83.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Popper's Analysis of Probability in Quantum Mechanics.Patrick Suppes - 1974 - In P. A. Schlipp (ed.), The Philosophy of Karl Popper (Book Ii). Open Court. pp. 760-774.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (4 other versions)The Logic of Scientific Discovery.K. Popper - 1959 - British Journal for the Philosophy of Science 10 (37):55-57.
    Download  
     
    Export citation  
     
    Bookmark   1325 citations  
  • Conjectures and Refutations: The Growth of Scientific Knowledge.Mary Hesse - 1965 - Philosophical Quarterly 15 (61):372-374.
    Download  
     
    Export citation  
     
    Bookmark   350 citations  
  • The elements of mathematical logic.Paul Charles Rosenbloom - 1950 - New York]: Dover Publications.
    An excellent introduction to mathematical logic, this book provides readers with a sound knowledge of the most important approaches to the subject, stressing the use of logical methods in attacking nontrivial problems. It covers the logic of classes, of propositions, of propositional functions, and the general syntax of language, with a brief introduction that also illustrates applications to so-called undecidability and incompleteness theorems. Other topics include the simple proof of the completeness of the theory of combinations, Church's theorem on the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Conjectures and Refutations.K. Popper - 1963 - Les Etudes Philosophiques 21 (3):431-434.
    Download  
     
    Export citation  
     
    Bookmark   1387 citations  
  • (1 other version)The Logical Foundations of Probability. [REVIEW]Rudolf Carnap - 1950 - Journal of Philosophy 60 (13):362-364.
    Download  
     
    Export citation  
     
    Bookmark   549 citations  
  • (1 other version)Logical Foundations of Probability.Rudolf Carnap - 1950 - Mind 62 (245):86-99.
    Download  
     
    Export citation  
     
    Bookmark   880 citations  
  • On relativizing Kolmogorov's absolute probability functions.Hugues Leblanc & Peter Roeper - 1989 - Notre Dame Journal of Formal Logic 30 (4):485-512.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical Foundations of Probability.Ernest H. Hutten - 1950 - Journal of Symbolic Logic 16 (3):205-207.
    Download  
     
    Export citation  
     
    Bookmark   278 citations  
  • (1 other version)Two autonomous axiom systems for the calculus of probabilities.Karl R. Popper - 1955 - British Journal for the Philosophy of Science 6 (21):51-57.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Creative and non-creative definitions in the calculus of probability.K. R. Popper - 1963 - Synthese 15 (1):167 - 186.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indiscernibility and identity in probability theory.Peter Roeper & Hugues Leblanc - 1990 - Notre Dame Journal of Formal Logic 32 (1):1-46.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What price substitutivity? A note on probability theory.Hugues Leblanc - 1981 - Philosophy of Science 48 (2):317-322.
    Teddy Seidenfeld recently claimed that Kolmogorov's probability theory transgresses the Substitutivity Law. Underscoring the seriousness of Seidenfeld's charge, the author shows that (Popper's version of) the law, to wit: If (∀ D)(Pr(B,D)=Pr(C,D)), then Pr(A,B)=Pr(A,C), follows from just C1. 0≤ Pr(A,B)≤ 1 C2. Pr(A,A)=1 C3. Pr(A & B,C)=Pr(A,B & C)× Pr(B,C) C4. Pr(A & B,C)=Pr(B & A,C) C5. Pr(A,B & C)=Pr(A,C & B), five constraints on Pr of the most elementary and most basic sort.
    Download  
     
    Export citation  
     
    Bookmark   4 citations