Switch to: Citations

Add references

You must login to add references.
  1. Classification Theory and the Number of Nonisomorphic Models.S. Shelah - 1982 - Journal of Symbolic Logic 47 (3):694-696.
    Download  
     
    Export citation  
     
    Bookmark   206 citations  
  • An abstract elementary class nonaxiomatizable in.Simon Henry - 2019 - Journal of Symbolic Logic 84 (3):1240-1251.
    We show that for any uncountable cardinal λ, the category of sets of cardinality at least λ and monomorphisms between them cannot appear as the category of points of a topos, in particular is not the category of models of a ${L_{\infty,\omega }}$-theory. More generally we show that for any regular cardinal $\kappa < \lambda$ it is neither the category of κ-points of a κ-topos, in particular, nor the category of models of a ${L_{\infty,\kappa }}$-theory.The proof relies on the construction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Saturation and solvability in abstract elementary classes with amalgamation.Sebastien Vasey - 2017 - Archive for Mathematical Logic 56 (5-6):671-690.
    Theorem 0.1LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an abstract elementary class with amalgamation and no maximal models. Letλ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is categorical inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then the model of cardinalityλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}is Galois-saturated.This answers a question asked independently by Baldwin and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Universal classes near ${\aleph _1}$.Marcos Mazari-Armida & Sebastien Vasey - 2018 - Journal of Symbolic Logic 83 (4):1633-1643.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Abstract elementary classes stable in ℵ0.Saharon Shelah & Sebastien Vasey - 2018 - Annals of Pure and Applied Logic 169 (7):565-587.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstract elementary classes and infinitary logics.David W. Kueker - 2008 - Annals of Pure and Applied Logic 156 (2):274-286.
    In this paper we study abstract elementary classes using infinitary logics and prove a number of results relating them. For example, if is an a.e.c. with Löwenheim–Skolem number κ then is closed under L∞,κ+-elementary equivalence. If κ=ω and has finite character then is closed under L∞,ω-elementary equivalence. Analogous results are established for . Galois types, saturation, and categoricity are also studied. We prove, for example, that if is finitary and λ-categorical for some infinite λ then there is some σLω1,ω such (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations