Switch to: Citations

Add references

You must login to add references.
  1. The modalized Heyting calculus: a conservative modal extension of the Intuitionistic Logic ★.Leo Esakia - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):349-366.
    In this paper we define an augmentation mHC of the Heyting propositional calculus HC by a modal operator ?. This modalized Heyting calculus mHC is a weakening of the Proof-Intuitionistic Logic KM of Kuznetsov and Muravitsky. In Section 2 we present a short selection of attractive (algebraic, relational, topological and categorical) features of mHC. In Section 3 we establish some close connections between mHC and certain normal extension K4.Grz of the modal system K4. We define a translation of mHC into (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Implicit connectives of algebraizable logics.Xavier Caicedo - 2004 - Studia Logica 78 (1-2):155 - 170.
    An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Linearization of the BCK-logic.Francisco M. García Olmedo & Antonio J. Rodríguez Salas - 2000 - Studia Logica 65 (1):31-51.
    In the paper we obtain a new characterization of the BCK-algebras which are subdirect product of BCK-chains. We give an axiomatic algebraizable extension of the BCK-calculus, by means of a recursively enumerable set of axioms, such that its equivalent algebraic semantics is definitionally equivalent to the quasivariety of BCK-algebras generated by the BCK-chains. We propose the concept of "linearization of a system" and we give some examples.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK-logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK-logic with negation by a family of connectives implicitly defined by equations and compatible with BCK-congruences. Many of the logics in the current literature are natural expansions of BCK-logic with negation. The validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK‐logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK‐logic with negation by a family of connectives implicitly defined by equations and compatible with BCK‐congruences. Many of the logics in the current literature are natural expansions of BCK‐logic with negation. The validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On frontal operators in Hilbert algebras.J. L. Castiglioni & H. J. San Martin - 2015 - Logic Journal of the IGPL 23 (2):217-234.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Compatible Operations on Residuated Lattices.J. L. Castiglioni & H. J. San Martín - 2011 - Studia Logica 98 (1-2):203-222.
    This work extend to residuated lattices the results of [ 7 ]. It also provides a possible generalization to this context of frontal operators in the sense of [ 9 ]. Let L be a residuated lattice, and f : L k → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L . We use this characterization of compatible functions in order to prove that the variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compatible operations on commutative residuated lattices.José Luis Castiglioni, Matías Menni & Marta Sagastume - 2008 - Journal of Applied Non-Classical Logics 18 (4):413-425.
    Let L be a commutative residuated lattice and let f : Lk → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of commutative residuated lattices is locally affine complete. Then, we find conditions on a not necessarily polynomial function P(x, y) in L that imply that the function x ↦ min{y є L (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Compatible Operations on Residuated Lattices.J. Castiglioni & H. San Martín - 2011 - Studia Logica 98 (1-2):203-222.
    This work extend to residuated lattices the results of [7]. It also provides a possible generalization to this context of frontal operators in the sense of [9].Let L be a residuated lattice, and f : Lk → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of residuated lattices is locally affine complete.We study (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An algebraic approach to intuitionistic connectives.Xavier Caicedo & Roberto Cignoli - 2001 - Journal of Symbolic Logic 66 (4):1620-1636.
    It is shown that axiomatic extensions of intuitionistic propositional calculus defining univocally new connectives, including those proposed by Gabbay, are strongly complete with respect to valuations in Heyting algebras with additional operations. In all cases, the double negation of such a connective is equivalent to a formula of intuitionistic calculus. Thus, under the excluded third law it collapses to a classical formula, showing that this condition in Gabbay's definition is redundant. Moreover, such connectives can not be interpreted in all Heyting (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations