Switch to: References

Add citations

You must login to add citations.
  1. Sentence connectives in formal logic.Lloyd Humberstone - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Compatible operations on commutative residuated lattices.José Luis Castiglioni, Matías Menni & Marta Sagastume - 2008 - Journal of Applied Non-Classical Logics 18 (4):413-425.
    Let L be a commutative residuated lattice and let f : Lk → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of commutative residuated lattices is locally affine complete. Then, we find conditions on a not necessarily polynomial function P(x, y) in L that imply that the function x ↦ min{y є L (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Compatible Operations on Residuated Lattices.J. L. Castiglioni & H. J. San Martín - 2011 - Studia Logica 98 (1-2):203-222.
    This work extend to residuated lattices the results of [ 7 ]. It also provides a possible generalization to this context of frontal operators in the sense of [ 9 ]. Let L be a residuated lattice, and f : L k → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L . We use this characterization of compatible functions in order to prove that the variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The logic Ł•.Marta S. Sagastume & Hernán J. San Martín - 2014 - Mathematical Logic Quarterly 60 (6):375-388.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relatively compatible operations in BCK-algebras and some related algebras.N. Lubomirsky, H. J. San Martín & W. J. Zuluaga Botero - 2017 - Logic Journal of the IGPL 25 (3):348-364.
    Let |$\textbf{A}$| be a |$BCK$|-algebra and |$f:A^{k}\rightarrow A$| a function. The main goal of this article is to give a necessary and sufficient condition for |$f$| to be compatible with respect to every relative congruence of |$\textbf{A}$|⁠. We extend this result in some related algebras, as e.g. in pocrims.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algebraic Expansions of Logics.Miguel Campercholi, Diego Nicolás Castaño, José Patricio Díaz Varela & Joan Gispert - 2023 - Journal of Symbolic Logic 88 (1):74-92.
    An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists! \mathop{\boldsymbol {\bigwedge }}\limits p = q$. For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show that the AE-subclasses of $\mathcal {Q}$ correspond to certain natural expansions of L, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by X. Caicedo. We proceed to characterize all the AE-subclasses of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal expansions of ririgs.AgustÍn L. Nagy & William J. Zuluaga Botero - forthcoming - Logic Journal of the IGPL.
    In this paper, we introduce the variety of |$I$|-modal ririgs. We characterize the congruence lattice of its members by means of |$I$|-filters, and we provide a description of |$I$|-filter generation. We also provide an axiomatic presentation for the variety generated by chains of the subvariety of contractive |$I$|-modal ririgs. Finally, we introduce a Hilbert-style calculus for a logic with |$I$|-modal ririgs as an equivalent algebraic semantics and we prove that such a logic has the parametrized local deduction-detachment theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication.Ramon Jansana & Hernán Javier San Martín - 2019 - Studia Logica 107 (2):351-374.
    In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Relative Principal Congruences in Term Quasivarieties.Hernán Javier San Martín - 2022 - Studia Logica 110 (6):1465-1491.
    Let \({\mathcal {K}}\) be a quasivariety. We say that \({\mathcal {K}}\) is a term quasivariety if there exist an operation of arity zero _e_ and a family of binary terms \(\{t_i\}_{i\in I}\) such that for every \(A \in {\mathcal {K}}\), \(\theta \) a \({\mathcal {K}}\) -congruence of _A_ and \(a,b\in A\) the following condition is satisfied: \((a,b)\in \theta \) if and only if \((t_{i}(a,b),e) \in \theta \) for every \(i\in I\). In this paper we study term quasivarieties. For every \(A\in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizability by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\forall}{\exists}!}$$\end{document}-sentences. [REVIEW]Miguel Campercholi & Diego Vaggione - 2011 - Archive for Mathematical Logic 50 (7-8):713-725.
    A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\forall\exists!}$$\end{document}-sentence is a sentence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\forall x_{1}\cdots x_{n}\exists!y_{1}\cdots y_{m}O(\overline{x},\overline{y})}$$\end{document}, where O is a quantifier-free formula, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\exists!}$$\end{document} stands for “there exist unique”. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is (up to isomorphism) a finite class of finite models then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation