Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - New York: Cambridge University Press.
    Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.
    Download  
     
    Export citation  
     
    Bookmark   702 citations  
  • Covariation in natural causal induction.Patricia W. Cheng & Laura R. Novick - 1992 - Psychological Review 99 (2):365-382.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Equilibria of the Rescorla-Wagner Model.David Danks - unknown
    The Rescorla–Wagner model has been a leading theory of animal causal induction for nearly 30 years, and human causal induction for the past 15 years. Recent theories 367) have provided alternative explanations of how people draw causal conclusions from covariational data. However, theoretical attempts to compare the Rescorla–Wagner model with more recent models have been hampered by the fact that the Rescorla–Wagner model is an algorithmic theory, while the more recent theories are all computational. This paper provides a detailed derivation (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   865 citations  
  • Estimating causal strength: the role of structural knowledge and processing effort.Michael R. Waldmann & York Hagmayer - 2001 - Cognition 82 (1):27-58.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Assessing interactive causal influence.Laura R. Novick & Patricia W. Cheng - 2004 - Psychological Review 111 (2):455-485.
    The discovery of conjunctive causes--factors that act in concert to produce or prevent an effect--has been explained by purely covariational theories. Such theories assume that concomitant variations in observable events directly license causal inferences, without postulating the existence of unobservable causal relations. This article discusses problems with these theories, proposes a causal-power theory that overcomes the problems, and reports empirical evidence favoring the new theory. Unlike earlier models, the new theory derives (a) the conditions under which covariation implies conjunctive causation (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Inferring causal networks from observations and interventions.Mark Steyvers, Joshua B. Tenenbaum, Eric-Jan Wagenmakers & Ben Blum - 2003 - Cognitive Science 27 (3):453-489.
    Information about the structure of a causal system can come in the form of observational data—random samples of the system's autonomous behavior—or interventional data—samples conditioned on the particular values of one or more variables that have been experimentally manipulated. Here we study people's ability to infer causal structure from both observation and intervention, and to choose informative interventions on the basis of observational data. In three causal inference tasks, participants were to some degree capable of distinguishing between competing causal hypotheses (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Combining Versus Analyzing Multiple Causes: How Domain Assumptions and Task Context Affect Integration Rules.Michael R. Waldmann - 2007 - Cognitive Science 31 (2):233-256.
    In everyday life, people typically observe fragments of causal networks. From this knowledge, people infer how novel combinations of causes they may never have observed together might behave. I report on 4 experiments that address the question of how people intuitively integrate multiple causes to predict a continuously varying effect. Most theories of causal induction in psychology and statistics assume a bias toward linearity and additivity. In contrast, these experiments show that people are sensitive to cues biasing various integration rules. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From covariation to causation: A causal power theory.Patricia W. Cheng - 1997 - Psychological Review 104 (2):367-405.
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Dynamical Causal Learning.David Danks, Thomas L. Griffiths & Joshua B. Tenenbaum - unknown
    Current psychological theories of human causal learning and judgment focus primarily on long-run predictions: two by estimating parameters of a causal Bayes nets, and a third through structural learning. This paper focuses on people’s short-run behavior by examining dynamical versions of these three theories, and comparing their predictions to a real-world dataset.
    Download  
     
    Export citation  
     
    Bookmark   10 citations