Switch to: References

Add citations

You must login to add citations.
  1. Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.Fabian A. Soto, Samuel J. Gershman & Yael Niv - 2014 - Psychological Review 121 (3):526-558.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Probabilistic models of cognition: Conceptual foundations.Nick Chater & Alan Yuille - 2006 - Trends in Cognitive Sciences 10 (7):287-291.
    Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, ‘sophisticated’ probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Bayesian generic priors for causal learning.Hongjing Lu, Alan L. Yuille, Mimi Liljeholm, Patricia W. Cheng & Keith J. Holyoak - 2008 - Psychological Review 115 (4):955-984.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • BUCKLE: A model of unobserved cause learning.Christian C. Luhmann & Woo-Kyoung Ahn - 2007 - Psychological Review 114 (3):657-677.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Theory of Causal Learning in Children: Causal Maps and Bayes Nets.Alison Gopnik, Clark Glymour, Laura Schulz, Tamar Kushnir & David Danks - 2004 - Psychological Review 111 (1):3-32.
    We propose that children employ specialized cognitive systems that allow them to recover an accurate “causal map” of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or “Bayes nets”. Children’s causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children (...)
    Download  
     
    Export citation  
     
    Bookmark   238 citations  
  • Bayes and Blickets: Effects of Knowledge on Causal Induction in Children and Adults.Thomas L. Griffiths, David M. Sobel, Joshua B. Tenenbaum & Alison Gopnik - 2011 - Cognitive Science 35 (8):1407-1455.
    People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Belief Updating in Moral Dilemmas.Zachary Horne, Derek Powell & Joseph Spino - 2013 - Review of Philosophy and Psychology 4 (4):705-714.
    Moral psychologists have shown that people’s past moral experiences can affect their subsequent moral decisions. One prominent finding in this line of research is that when people make a judgment about the Trolley dilemma after considering the Footbridge dilemma, they are significantly less likely to decide it is acceptable to redirect a train to save five people. Additionally, this ordering effect is asymmetrical, as making a judgment about the Trolley dilemma has little to no effect on people’s judgments about the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Locally Bayesian learning with applications to retrospective revaluation and highlighting.John K. Kruschke - 2006 - Psychological Review 113 (4):677-699.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The supposed competition between theories of human causal inference.David Danks - 2005 - Philosophical Psychology 18 (2):259 – 272.
    Newsome ((2003). The debate between current versions of covariation and mechanism approaches to causal inference. Philosophical Psychology, 16, 87-107.) recently published a critical review of psychological theories of human causal inference. In that review, he characterized covariation and mechanism theories, the two dominant theory types, as competing, and offered possible ways to integrate them. I argue that Newsome has misunderstood the theoretical landscape, and that covariation and mechanism theories do not directly conflict. Rather, they rely on distinct sets of reliable (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Scientific coherence and the fusion of experimental results.David Danks - 2005 - British Journal for the Philosophy of Science 56 (4):791-807.
    A pervasive feature of the sciences, particularly the applied sciences, is an experimental focus on a few (often only one) possible causal connections. At the same time, scientists often advance and apply relatively broad models that incorporate many different causal mechanisms. We are naturally led to ask whether there are normative rules for integrating multiple local experimental conclusions into models covering many additional variables. In this paper, we provide a positive answer to this question by developing several inference rules that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations