Switch to: Citations

Add references

You must login to add references.
  1. Models without indiscernibles.Fred G. Abramson & Leo A. Harrington - 1978 - Journal of Symbolic Logic 43 (3):572-600.
    For T any completion of Peano Arithmetic and for n any positive integer, there is a model of T of size $\beth_n$ with no (n + 1)-length sequence of indiscernibles. Hence the Hanf number for omitting types over T, H(T), is at least $\beth_\omega$ . (Now, using an upper bound previously obtained by Julia Knight H (true arithmetic) is exactly $\beth_\omega$ ). If T ≠ true arithmetic, then $H(T) = \beth_{\omega1}$ . If $\delta \not\rightarrow (\rho)^{ , then any completion of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Saturation of ultrapowers and Keisler's order.Saharon Shelah - 1972 - Annals of Mathematical Logic 4 (1):75.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On ◁∗-maximality.Mirna Džamonja & Saharon Shelah - 2004 - Annals of Pure and Applied Logic 125 (1-3):119-158.
    This paper investigates a connection between the semantic notion provided by the ordering * among theories in model theory and the syntactic SOPn hierarchy of Shelah. It introduces two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In Shelah's article 229) it was shown that SOP3 implies *-maximality and we prove here that *-maximality in a model of GCH implies a property called SOP2″. It has been (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Ultraproducts which are not saturated.H. Jerome Keisler - 1967 - Journal of Symbolic Logic 32 (1):23-46.
    In this paper we continue our study, begun in [5], of the connection between ultraproducts and saturated structures. IfDis an ultrafilter over a setI, andis a structure, the ultrapower ofmoduloDis denoted byD-prod. The ultrapower is important because it is a method of constructing structures which are elementarily equivalent to a given structure. Our ultimate aim is to find out what kinds of structure are ultrapowers of. We made a beginning in [5] by proving that, assuming the generalized continuum hypothesis, for (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Characterization of NIP theories by ordered graph-indiscernibles.Lynn Scow - 2012 - Annals of Pure and Applied Logic 163 (11):1624-1641.
    We generalize the Unstable Formula Theorem characterization of stable theories from Shelah [11], that a theory T is stable just in case any infinite indiscernible sequence in a model of T is an indiscernible set. We use a generalized form of indiscernibles from [11], in our notation, a sequence of parameters from an L-structure M, , indexed by an L′-structure I is L′-generalized indiscernible inM if qftpL′=qftpL′ implies tpL=tpL for all same-length, finite ¯,j from I. Let Tg be the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Hypergraph sequences as a tool for saturation of ultrapowers.M. E. Malliaris - 2012 - Journal of Symbolic Logic 77 (1):195-223.
    Let T 1 , T 2 be countable first-order theories, M i ⊨ T i , and ������ any regular ultrafilter on λ ≥ $\aleph_{0}$ . A longstanding open problem of Keisler asks when T 2 is more complex than T 1 , as measured by the fact that for any such λ, ������, if the ultrapower (M 2 ) λ /������ realizes all types over sets of size ≤ λ, then so must the ultrapower (M 1 ) λ /������. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Toward classifying unstable theories.Saharon Shelah - 1996 - Annals of Pure and Applied Logic 80 (3):229-255.
    Download  
     
    Export citation  
     
    Bookmark   44 citations