Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)A formulation of the simple theory of types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.
    Download  
     
    Export citation  
     
    Bookmark   227 citations  
  • (1 other version)Completeness in the theory of types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • Representation, reasoning, and relational structures: a hybrid logic manifesto.P. Blackburn - 2000 - Logic Journal of the IGPL 8 (3):339-365.
    This paper is about the good side of modal logic, the bad side of modal logic, and how hybrid logic takes the good and fixes the bad.In essence, modal logic is a simple formalism for working with relational structures . But modal logic has no mechanism for referring to or reasoning about the individual nodes in such structures, and this lessens its effectiveness as a representation formalism. In their simplest form, hybrid logics are upgraded modal logics in which reference to (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Pure Extensions, Proof Rules, and Hybrid Axiomatics.Patrick Blackburn & Balder Ten Cate - 2006 - Studia Logica 84 (2):277-322.
    In this paper we argue that hybrid logic is the deductive setting most natural for Kripke semantics. We do so by investigating hybrid axiomatics for a variety of systems, ranging from the basic hybrid language (a decidable system with the same complexity as orthodox propositional modal logic) to the strong Priorean language (which offers full first-order expressivity).We show that hybrid logic offers a genuinely first-order perspective on Kripke semantics: it is possible to define base logics which extend automatically to a (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Completeness in Hybrid Type Theory.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2014 - Journal of Philosophical Logic 43 (2-3):209-238.
    We show that basic hybridization makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$@_i$\end{document} in propositional and first-order hybrid logic. This means: interpret \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$@_i\alpha _a$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A partial functions version of church's simple theory of types.William M. Farmer - 1990 - Journal of Symbolic Logic 55 (3):1269-1291.
    Church's simple theory of types is a system of higher-order logic in which functions are assumed to be total. We present in this paper a version of Church's system called PF in which functions may be partial. The semantics of PF, which is based on Henkin's general-models semantics, allows terms to be nondenoting but requires formulas to always denote a standard truth value. We prove that PF is complete with respect to its semantics. The reasoning mechanism in PF for partial (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Completeness in Hybrid Type Theory.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2013 - Journal of Philosophical Logic (2-3):1-30.
    We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret $@_i$ in propositional and first-order hybrid logic. This means: interpret $@_i\alpha _a$ , where $\alpha _a$ is an expression of any type $a$ , as an expression of type $a$ that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Completeness in Equational Hybrid Propositional Type Theory.Maria Manzano, Manuel Martins & Antonia Huertas - 2019 - Studia Logica 107 (6):1159-1198.
    Equational hybrid propositional type theory ) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: Completeness in type theory, The completeness of the first-order functional calculus (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Hybrid Logic.Andrzej Indrzejczak - 2007 - Logic and Logical Philosophy 16 (2-3):147-257.
    This is an extended version of the lectures given during the 12-thConference on Applications of Logic in Philosophy and in the Foundationsof Mathematics in Szklarska Poręba. It contains a surveyof modal hybrid logic, one of the branches of contemporary modal logic. Inthe first part a variety of hybrid languages and logics is presented with adiscussion of expressivity matters. The second part is devoted to thoroughexposition of proof methods for hybrid logics. The main point is to showthat application of hybrid logics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations