Switch to: Citations

Add references

You must login to add references.
  1. Humean scientific explanation.Elizabeth Miller - 2015 - Philosophical Studies 172 (5):1311-1332.
    In a recent paper, Barry Loewer attempts to defend Humeanism about laws of nature from a charge that Humean laws are not adequately explanatory. Central to his defense is a distinction between metaphysical and scientific explanations: even if Humeans cannot offer further metaphysical explanations of particular features of their “mosaic,” that does not preclude them from offering scientific explanations of these features. According to Marc Lange, however, Loewer’s distinction is of no avail. Defending a transitivity principle linking scientific explanantia to (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Real patterns.Daniel C. Dennett - 1991 - Journal of Philosophy 88 (1):27-51.
    Are there really beliefs? Or are we learning (from neuroscience and psychology, presumably) that, strictly speaking, beliefs are figments of our imagination, items in a superceded ontology? Philosophers generally regard such ontological questions as admitting just two possible answers: either beliefs exist or they don't. There is no such state as quasi-existence; there are no stable doctrines of semi-realism. Beliefs must either be vindicated along with the viruses or banished along with the banshees. A bracing conviction prevails, then, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   617 citations  
  • Substantivalism vs Relationalism About Space in Classical Physics.Shamik Dasgupta - 2015 - Philosophy Compass 10 (9):601-624.
    Substantivalism is the view that space exists in addition to any material bodies situated within it. Relationalism is the opposing view that there is no such thing as space; there are just material bodies, spatially related to one another. This paper assesses this issue in the context of classical physics. It starts by describing the bucket argument for substantivalism. It then turns to anti-substantivalist arguments, including Leibniz's classic arguments and their contemporary reincarnation under the guise of ‘symmetry’. It argues that (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Inexpressible Ignorance.Shamik Dasgupta - 2015 - Philosophical Review 124 (4):441-480.
    Sometimes, ignorance is inexpressible. Lewis recognized this when he argued, in “Ramseyan Humility,” that we cannot know which property occupies which causal role. This peculiar state of ignorance arises in a number of other domains too, including ignorance about our position in space and the identities of individuals. In these cases, one does not know something, and yet one cannot give voice to one's ignorance in a certain way. But what does the ignorance in these cases consist in? This essay (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the deeper topological (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Rehabilitating relationalism.Gordon Belot - 1999 - International Studies in the Philosophy of Science 13 (1):35 – 52.
    I argue that the conviction, widespread among philosophers, that substantivalism enjoys a clear superiority over relationalism in both Newtonian and relativistic physics is ill-founded. There are viable relationalist approaches to understanding these theories, and the substantival-relational debate should be of interest to philosophers and physicists alike, because of its connection with questions about the correct space of states for various physical theories.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The End of Time: The Next Revolution in Physics.Julian Barbour - 1999 - Weidenfeld & Nicholson.
    In a revolutionary new book, a theoretical physicist attacks the foundations of modern scientific theory, including the notion of time, as he shares evidence of ...
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Grounding, scientific explanation, and Humean laws.Marc Lange - 2013 - Philosophical Studies 164 (1):255-261.
    It has often been argued that Humean accounts of natural law cannot account for the role played by laws in scientific explanations. Loewer (Philosophical Studies 2012) has offered a new reply to this argument on behalf of Humean accounts—a reply that distinguishes between grounding (which Loewer portrays as underwriting a kind of metaphysical explanation) and scientific explanation. I will argue that Loewer’s reply fails because it cannot accommodate the relation between metaphysical and scientific explanation. This relation also resolves a puzzle (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Sklar's Maneuver.Bradford Skow - 2007 - British Journal for the Philosophy of Science 58 (4):777-786.
    Sklar ([1974]) claimed that relationalism about ontology-the doctrine that space and time do not exist-is compatible with Newtonian mechanics. To defend this claim he sketched a relationalist interpretation of Newtonian mechanics. In his interpretation, absolute acceleration is a fundamental, intrinsic property of material bodies; that a body undergoes absolute acceleration does not entail that space and time exist. But Sklar left his proposal as just a sketch; his defense of relationalism succeeds only if the sketch can be filled in. I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mirroring as an a priori symmetry.Simon Saunders - 2007 - Philosophy of Science 74 (4):452-480.
    A relationist will account for the use of ‘left’ and ‘right’ in terms of relative orientations, and other properties and relations invariant under mirroring. This analysis will apply whenever mirroring is a symmetry, so it certainly applies to classical mechanics; we argue it applies to any physical theory formulated on a manifold: it is in this sense an a priori symmetry. It should apply in particular to parity violating theories in quantum mechanics; mirror symmetry is only broken in such theories (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The metaphysics of quantity.Brent Mundy - 1987 - Philosophical Studies 51 (1):29 - 54.
    A formal theory of quantity T Q is presented which is realist, Platonist, and syntactically second-order (while logically elementary), in contrast with the existing formal theories of quantity developed within the theory of measurement, which are empiricist, nominalist, and syntactically first-order (while logically non-elementary). T Q is shown to be formally and empirically adequate as a theory of quantity, and is argued to be scientifically superior to the existing first-order theories of quantity in that it does not depend upon empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Buckets of water and waves of space: Why spacetime is probably a substance.Tim Maudlin - 1993 - Philosophy of Science 60 (2):183-203.
    This paper sketches a taxonomy of forms of substantivalism and relationism concerning space and time, and of the traditional arguments for these positions. Several natural sorts of relationism are able to account for Newton's bucket experiment. Conversely, appropriately constructed substantivalism can survive Leibniz's critique, a fact which has been obscured by the conflation of two of Leibniz's arguments. The form of relationism appropriate to the Special Theory of Relativity is also able to evade the problems raised by Field. I survey (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Quantitative Properties.M. Eddon - 2013 - Philosophy Compass 8 (7):633-645.
    Two grams mass, three coulombs charge, five inches long – these are examples of quantitative properties. Quantitative properties have certain structural features that other sorts of properties lack. What are the metaphysical underpinnings of quantitative structure? This paper considers several accounts of quantity and assesses the merits of each.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Ramseyan humility.David K. Lewis - 2009 - In David Braddon-Mitchell & Robert Nola (eds.), Conceptual Analysis and Philosophical Naturalism. MIT Press. pp. 203-222.
    Download  
     
    Export citation  
     
    Bookmark   243 citations  
  • Are Quantities Relations? A Reply to Bigelow and Pargetter.D. M. Armstrong - 1988 - Philosophical Studies 54 (3):305 - 316.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Can We Dispense with Space-Time?Hartry Field - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:33-90.
    This paper is concerned with the debate between substantival and relational theories of space-time, and discusses two difficulties that beset the relationalist: a difficulty posed by field theories, and another difficulty called the problem of quantities. A main purpose of the paper is to argue that possibility can not always be used as a surrogate of ontology, and that in particular that there is no hope of using possibility to solve the problem of quantities.
    Download  
     
    Export citation  
     
    Bookmark   52 citations