Switch to: Citations

Add references

You must login to add references.
  1. Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski & Hiroakira Ono - 2007 - Elsevier.
    This is also where we begin investigating lattices of logics and varieties, rather than particular examples.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Substructural Fuzzy Logics.George Metcalfe & Franco Montagna - 2007 - Journal of Symbolic Logic 72 (3):834 - 864.
    Substructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0.1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) ∨ ((B → A) ∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MTL and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Interpolation and Beth’s property in propositional many-valued logics: A semantic investigation.Franco Montagna - 2006 - Annals of Pure and Applied Logic 141 (1):148-179.
    In this paper we give a rather detailed algebraic investigation of interpolation and Beth’s property in propositional many-valued logics extending Hájek’s Basic Logic [P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, 1998], and we connect such properties with amalgamation and strong amalgamation in the corresponding varieties of algebras. It turns out that, while the most interesting extensions of in the language of have deductive interpolation, very few of them have Beth’s property or Craig interpolation. Thus in the last part of the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A complete many-valued logic with product-conjunction.Petr Hájek, Lluis Godo & Francesc Esteva - 1996 - Archive for Mathematical Logic 35 (3):191-208.
    A simple complete axiomatic system is presented for the many-valued propositional logic based on the conjunction interpreted as product, the coresponding implication (Goguen's implication) and the corresponding negation (Gödel's negation). Algebraic proof methods are used. The meaning for fuzzy logic (in the narrow sense) is shortly discussed.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL.Nikolaos Galatos & Hiroakira Ono - 2006 - Studia Logica 83 (1-3):279-308.
    Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation properties and explain how they imply the amalgamation property for certain varieties of residuated lattices.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Fuzzy logics based on [0,1)-continuous uninorms.Dov Gabbay & George Metcalfe - 2007 - Archive for Mathematical Logic 46 (5-6):425-449.
    Axiomatizations are presented for fuzzy logics characterized by uninorms continuous on the half-open real unit interval [0,1), generalizing the continuous t-norm based approach of Hájek. Basic uninorm logic BUL is defined and completeness is established with respect to algebras with lattice reduct [0,1] whose monoid operations are uninorms continuous on [0,1). Several extensions of BUL are also introduced. In particular, Cross ratio logic CRL, is shown to be complete with respect to one special uninorm. A Gentzen-style hypersequent calculus is provided (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Geometry of Robinson consistency in Łukasiewicz logic.Manuela Busaniche & Daniele Mundici - 2007 - Annals of Pure and Applied Logic 147 (1):1-22.
    We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras—the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric.
    Download  
     
    Export citation  
     
    Bookmark   4 citations