Switch to: Citations

Add references

You must login to add references.
  1. Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Time, quantum mechanics, and decoherence.Simon Saunders - 1995 - Synthese 102 (2):235 - 266.
    State-reduction and the notion of actuality are compared to passage through time and the notion of the present; already in classical relativity the latter give rise to difficulties. The solution proposed here is to treat both tense and value-definiteness as relational properties or facts as relations; likewise the notions of change and probability. In both cases essential characteristics are absent: temporal relations are tenselessly true; probabilistic relations are deterministically true. The basic ideas go back to Everett, although the technical development (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   308 citations  
  • Probability in the Everett interpretation.Hilary Greaves - 2007 - Philosophy Compass 2 (1):109–128.
    The Everett (many-worlds) interpretation of quantum mechanics faces a prima facie problem concerning quantum probabilities. Research in this area has been fast-paced over the last few years, following a controversial suggestion by David Deutsch that decision theory can solve the problem. This article provides a non-technical introduction to the decision-theoretic program, and a sketch of the current state of the debate.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (2):159-88.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Comment on Lockwood.David Deutsch - 1996 - British Journal for the Philosophy of Science 47 (2):222-228.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • One World versus Many: the Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation.Adrian Kent - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace, Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Why Should We Interpret Quantum Mechanics?Louis Marchildon - 2004 - Foundations of Physics 34 (10):1453-1466.
    The development of quantum information theory has renewed interest in the idea that the state vector does not represent the state of a quantum system, but rather the knowledge or information that we may have on the system. I argue that this epistemic view of states appears to solve foundational problems of quantum mechanics only at the price of being essentially incomplete.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Theory of the Universal Wavefunction.Hugh Everett - 1973 - In B. DeWitt & N. Graham, The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   71 citations