- (3 other versions)The independence of the continuum hypothesis.Paul Cohen - 1963 - Proc. Nat. Acad. Sci. USA 50 (6):1143-1148.details
|
|
The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory.Kurt Gödel - 1940 - Princeton university press;: Princeton University Press;. Edited by George William Brown.details
|
|
(1 other version)An Extension of a Theorem of Gaifman-Hales-Solovay.Haim Gaifman - 1967 - Fundamenta Mathematicae 61 (1):29-32.details
|
|
Lectures on Boolean Algebras.Paul R. Halmos - 1966 - Journal of Symbolic Logic 31 (2):253-254.details
|
|
Set theory and the continuum hypothesis.Paul J. Cohen - 1966 - New York,: W. A. Benjamin.details
|
|
Boolean Algebras.Roman Sikorski - 1966 - Journal of Symbolic Logic 31 (2):251-253.details
|
|
(3 other versions)The Independence of the Continuum Hypothesis.Paul J. Cohen - 1963 - Proceedings of the National Academy of Sciences of the United States of America 50 (6):1143--8.details
|
|
Mathematical logic.Joseph Robert Shoenfield - 1967 - Reading, Mass.,: Addison-Wesley.details
|
|
(1 other version)On the Cardinality of\ sum_2^ 1 Sets of Reals.Robert M. Solovay - 1969 - In Kurt Gödel, Jack J. Bulloff, Thomas C. Holyoke & Samuel Wilfred Hahn (eds.), Foundations of mathematics. New York,: Springer. pp. 58--73.details
|
|
New Proof of a Theorem of Gaifman and Hales.Robert M. Solovay - 1967 - Journal of Symbolic Logic 32 (1):132-132.details
|
|
Every analytic set is Ramsey.Jack Silver - 1970 - Journal of Symbolic Logic 35 (1):60-64.details
|
|
(1 other version)Sierpiński Wacław. Hypothèse du continu. Second edition. Chelsea Publishing Company, New York 1956, XVII + 274 pp.Sierpiński Wacław. L'hypothèse généralisée du continu et l'axiome du choix. A reprint of XIII 176. Therein, pp. 193–197. [REVIEW]Alonzo Church - 1958 - Journal of Symbolic Logic 23 (2):215-215.details
|
|
Review: Robert M. Solovay, A Model of Set-Theory in which Every Set of Reals is Lebesgue Measurable. [REVIEW]Richard Laver - 1973 - Journal of Symbolic Logic 38 (3):529-529.details
|
|