Switch to: References

Add citations

You must login to add citations.
  1. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Internal cohen extensions.D. A. Martin & R. M. Solovay - 1970 - Annals of Mathematical Logic 2 (2):143-178.
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Levy and set theory.Akihiro Kanamori - 2006 - Annals of Pure and Applied Logic 140 (1):233-252.
    Azriel Levy did fundamental work in set theory when it was transmuting into a modern, sophisticated field of mathematics, a formative period of over a decade straddling Cohen’s 1963 founding of forcing. The terms “Levy collapse”, “Levy hierarchy”, and “Levy absoluteness” will live on in set theory, and his technique of relative constructibility and connections established between forcing and definability will continue to be basic to the subject. What follows is a detailed account and analysis of Levy’s work and contributions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Generalizations of Kochen and Specker's theorem and the effectiveness of Gleason's theorem.Itamar Pitowsky - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):177-194.
    Kochen and Specker’s theorem can be seen as a consequence of Gleason’s theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason’s theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated. r 2003 Elsevier Ltd. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite additivity, another lottery paradox and conditionalisation.Colin Howson - 2014 - Synthese 191 (5):1-24.
    In this paper I argue that de Finetti provided compelling reasons for rejecting countable additivity. It is ironical therefore that the main argument advanced by Bayesians against following his recommendation is based on the consistency criterion, coherence, he himself developed. I will show that this argument is mistaken. Nevertheless, there remain some counter-intuitive consequences of rejecting countable additivity, and one in particular has all the appearances of a full-blown paradox. I will end by arguing that in fact it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The well‐ordered and well‐orderable subsets of a set.John Truss - 1973 - Mathematical Logic Quarterly 19 (14‐18):211-214.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the status of statistical inferences.Itamar Pitowsky - 1985 - Synthese 63 (2):233 - 247.
    Can the axioms of probability theory and the classical patterns of statistical inference ever be falsified by observation? Various possible answers to this question are examined in a set theoretical context and in relation to the findings of microphysics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Summable gaps.James Hirschorn - 2003 - Annals of Pure and Applied Logic 120 (1-3):1-63.
    It is proved, under Martin's Axiom, that all gaps in are indestructible in any forcing extension by a separable measure algebra. This naturally leads to a new type of gap, a summable gap. The results of these investigations have applications in Descriptive Set Theory. For example, it is shown that under Martin's Axiom the Baire categoricity of all Δ31 non-Δ31-complete sets of reals requires a weakly compact cardinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • True or false? A case in the study of harmonic functions.Fausto di Biase - 2009 - Topoi 28 (2):143-160.
    Recent mathematical results, obtained by the author, in collaboration with Alexander Stokolos, Olof Svensson, and Tomasz Weiss, in the study of harmonic functions, have prompted the following reflections, intertwined with views on some turning points in the history of mathematics and accompanied by an interpretive key that could perhaps shed some light on other aspects of (the development of) mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Subjective Roots of Forcing Theory and Their Influence in Independence Results.Stathis Livadas - 2015 - Axiomathes 25 (4):433-455.
    This article attempts a subjectively based approach, in fact one phenomenologically motivated, toward some key concepts of forcing theory, primarily the concepts of a generic set and its global properties and the absoluteness of certain fundamental relations in the extension to a forcing model M[G]. By virtue of this motivation and referring both to the original and current formulation of forcing I revisit certain set-theoretical notions serving as underpinnings of the theory and try to establish their deeper subjectively founded content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Towers in [ω]ω and ωω.Peter Lars Dordal - 1989 - Annals of Pure and Applied Logic 45 (3):247-276.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • On the decomposition of sets of reals to borel sets.A. Levy & R. M. Solovay - 1972 - Annals of Mathematical Logic 5 (1):1-19.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Fragments of Martin's axiom and δ13 sets of reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.
    We strengthen a result of Harrington and Shelah by showing that, unless ω1 is an inaccessible cardinal in L, a relatively weak fragment of Martin's axiom implies that there exists a δ13 set of reals without the property of Baire.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Postulates for time evolution in quantum mechanics.B. Baumgartner - 1994 - Foundations of Physics 24 (6):855-872.
    A detailed list of postulates is formulated in an algebraic setting. These postulates are sufficient to entail the standard time evolution governed by the Schrödinger or Dirac equation. They are also necessary in a strong sense: Dropping any one of the postulates allows for other types of time evolution, as is demonstrated with examples. Some philosophical remarks hint on possible further investigations.
    Download  
     
    Export citation  
     
    Bookmark  
  • Measure, randomness and sublocales.Alex Simpson - 2012 - Annals of Pure and Applied Logic 163 (11):1642-1659.
    This paper investigates aspects of measure and randomness in the context of locale theory . We prove that every measure μ, on the σ-frame of opens of a fitted σ-locale X, extends to a measure on the lattice of all σ-sublocales of X . Furthermore, when μ is a finite measure with μ=M, the σ-locale X has a smallest σ-sublocale of measure M . In particular, when μ is a probability measure, X has a smallest σ-sublocale of measure 1. All (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Regular probability comparisons imply the Banach–Tarski Paradox.Alexander R. Pruss - 2014 - Synthese 191 (15):3525-3540.
    Consider the regularity thesis that each possible event has non-zero probability. Hájek challenges this in two ways: there can be nonmeasurable events that have no probability at all and on a large enough sample space, some probabilities will have to be zero. But arguments for the existence of nonmeasurable events depend on the axiom of choice. We shall show that the existence of anything like regular probabilities is by itself enough to imply a weak version of AC sufficient to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • About Prikry generic extensions.Claude Sureson - 1991 - Annals of Pure and Applied Logic 51 (3):247-278.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Selective ultrafilters and homogeneity.Andreas Blass - 1988 - Annals of Pure and Applied Logic 38 (3):215-255.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit of Woodin cardinals. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong compactness and other cardinal sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)A new class of order types.James E. Baumgartner - 1976 - Annals of Mathematical Logic 9 (3):187-222.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Projective subsets of separable metric spaces.Arnold W. Miller - 1990 - Annals of Pure and Applied Logic 50 (1):53-69.
    In this paper we will consider two possible definitions of projective subsets of a separable metric space X. A set A subset of or equal to X is Σ11 iff there exists a complete separable metric space Y and Borel set B subset of or equal to X × Y such that A = {x ε X : there existsy ε Y ε B}. Except for the fact that X may not be completely metrizable, this is the classical definition of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An infinitary Ramsey property.William J. Mitchell - 1992 - Annals of Pure and Applied Logic 57 (2):151-160.
    Mitchell, W.J., An infinitary Ramsey property, Annals of Pure and Applied Logic 57 151–160. We prove that the consistency of a measurable cardinal implies the consistency of a cardinal κ>+ satisfying the partition relations κ ω and κ ωregressive. This result follows work of Spector which uses the same hypothesis to prove the consistency of ω1 ω. We also give some examples of partition relations which can be proved for ω1 using the methods of Spector but cannot be proved for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing and generalized quantifiers.J. Krivine - 1973 - Annals of Mathematical Logic 5 (3):199.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Infinite combinatorics and definability.Arnold W. Miller - 1989 - Annals of Pure and Applied Logic 41 (2):179-203.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Models of set theory containing many perfect sets.John Truss - 1974 - Annals of Mathematical Logic 7 (2):197.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Σ1-well-founded compactness.Nigel Cutland & Matt Kauffmann - 1980 - Annals of Mathematical Logic 18 (3):271-296.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective partitions of the real line into Borel sets of bounded rank.Jacques Stern - 1980 - Annals of Mathematical Logic 18 (1):29.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What new axioms could not be.Kai Hauser - 2002 - Dialectica 56 (2):109–124.
    The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical quantum theory I: Random ultrafilters as hidden variables.William Boos - 1996 - Synthese 107 (1):83 - 143.
    The basic purpose of this essay, the first of an intended pair, is to interpret standard von Neumann quantum theory in a framework of iterated measure algebraic truth for mathematical (and thus mathematical-physical) assertions — a framework, that is, in which the truth-values for such assertions are elements of iterated boolean measure-algebras (cf. Sections 2.2.9, 5.2.1–5.2.6 and 5.3 below).The essay itself employs constructions of Takeuti's boolean-valued analysis (whose origins lay in work of Scott, Solovay, Krauss and others) to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A model of ZF + there exists an inaccessible, in which the dedekind cardinals constitute a natural non-standard model of arithmetic.Gershon Sageev - 1981 - Annals of Mathematical Logic 21 (2):221-281.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some results on consecutive large cardinals.Arthur W. Apter - 1983 - Annals of Pure and Applied Logic 25 (1):1-17.
    We obtain 2 models in which AC is false and in which there are long sequences of consecutive large cardinals.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the length of Borel hierarchies.Arnorld W. Miller - 1979 - Annals of Mathematical Logic 16 (3):233.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Linearization of definable order relations.Vladimir Kanovei - 2000 - Annals of Pure and Applied Logic 102 (1-2):69-100.
    We prove that if ≼ is an analytic partial order then either ≼ can be extended to a Δ 2 1 linear order similar to an antichain in 2 ω 1 , ordered lexicographically, or a certain Borel partial order ⩽ 0 embeds in ≼. Similar linearization results are presented, for κ -bi-Souslin partial orders and real-ordinal definable orders in the Solovay model. A corollary for analytic equivalence relations says that any Σ 1 1 equivalence relation E , such that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Subclasses of the Weakly Random Reals.Johanna N. Y. Franklin - 2010 - Notre Dame Journal of Formal Logic 51 (4):417-426.
    The weakly random reals contain not only the Schnorr random reals as a subclass but also the weakly 1-generic reals and therefore the n -generic reals for every n . While the class of Schnorr random reals does not overlap with any of these classes of generic reals, their degrees may. In this paper, we describe the extent to which this is possible for the Turing, weak truth-table, and truth-table degrees and then extend our analysis to the Schnorr random and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Successive large cardinals.Everett L. Bull - 1978 - Annals of Mathematical Logic 15 (2):161.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Projective forcing.Joan Bagaria & Roger Bosch - 1997 - Annals of Pure and Applied Logic 86 (3):237-266.
    We study the projective posets and their properties as forcing notions. We also define Martin's axiom restricted to projective sets, MA, and show that this axiom is weaker than full Martin's axiom by proving the consistency of ZFC + ¬lCH + MA with “there exists a Suslin tree”, “there exists a non-strong gap”, “there exists an entangled set of reals” and “there exists κ < 20 such that 20 < 2k”.
    Download  
     
    Export citation  
     
    Bookmark   5 citations