Switch to: Citations

Add references

You must login to add references.
  1. [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)A combinatorial property of p κλ.Telis K. Menas - 1976 - Journal of Symbolic Logic 41 (1):225-234.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Cardinal invariants of the continuum and combinatorics on uncountable cardinals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 144 (1-3):43-72.
    We explore the connection between combinatorial principles on uncountable cardinals, like stick and club, on the one hand, and the combinatorics of sets of reals and, in particular, cardinal invariants of the continuum, on the other hand. For example, we prove that additivity of measure implies that Martin’s axiom holds for any Cohen algebra. We construct a model in which club holds, yet the covering number of the null ideal is large. We show that for uncountable cardinals κ≤λ and , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Baire numbers, uncountable Cohen sets and perfect-set forcing.Avner Landver - 1992 - Journal of Symbolic Logic 57 (3):1086-1107.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)[Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Some combinatorial problems concerning uncountable cardinals.Thomas J. Jech - 1973 - Annals of Mathematical Logic 5 (3):165.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Semi-Cohen Boolean algebras.Bohuslav Balcar, Thomas Jech & Jindřich Zapletal - 1997 - Annals of Pure and Applied Logic 87 (3):187-208.
    We investigate classes of Boolean algebras related to the notion of forcing that adds Cohen reals. A Cohen algebra is a Boolean algebra that is dense in the completion of a free Boolean algebra. We introduce and study generalizations of Cohen algebras: semi-Cohen algebras, pseudo-Cohen algebras and potentially Cohen algebras. These classes of Boolean algebras are closed under completion.
    Download  
     
    Export citation  
     
    Bookmark   4 citations