Switch to: Citations

Add references

You must login to add references.
  1. Reflexive Intermediate Propositional Logics.Nathan C. Carter - 2006 - Notre Dame Journal of Formal Logic 47 (1):39-62.
    Which intermediate propositional logics can prove their own completeness? I call a logic reflexive if a second-order metatheory of arithmetic created from the logic is sufficient to prove the completeness of the original logic. Given the collection of intermediate propositional logics, I prove that the reflexive logics are exactly those that are at least as strong as testability logic, that is, intuitionistic logic plus the scheme $\neg φ ∨ \neg\neg φ. I show that this result holds regardless of whether Tarskian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intuitionistic Completeness and Classical Logic.D. C. McCarty - 2002 - Notre Dame Journal of Formal Logic 43 (4):243-248.
    We show that, if a suitable intuitionistic metatheory proves that consistency implies satisfiability for subfinite sets of propositional formulas relative either to standard structures or to Kripke models, then that metatheory also proves every negative instance of every classical propositional tautology. Since reasonable intuitionistic set theories such as HAS or IZF do not demonstrate all such negative instances, these theories cannot prove completeness for intuitionistic propositional logic in the present sense.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Undecidability and intuitionistic incompleteness.D. C. McCarty - 1996 - Journal of Philosophical Logic 25 (5):559 - 565.
    Let S be a deductive system such that S-derivability (⊦s) is arithmetic and sound with respect to structures of class K. From simple conditions on K and ⊦s, it follows constructively that the K-completeness of ⊦s implies MP(S), a form of Markov's Principle. If ⊦s is undecidable then MP(S) is independent of first-order Heyting arithmetic. Also, if ⊦s is undecidable and the S proof relation is decidable, then MP(S) is independent of second-order Heyting arithmetic, HAS. Lastly, when ⊦s is many-one (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Incompleteness in intuitionistic metamathematics.David Charles McCarty - 1991 - Notre Dame Journal of Formal Logic 32 (3):323-358.
    Download  
     
    Export citation  
     
    Bookmark   12 citations