Switch to: Citations

Add references

You must login to add references.
  1. Foundations of Logic and Mathematics.Rudolf Carnap - 1937 - Chicago, IL, USA: U. Of Chicago P.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • The structuralist view of mathematical objects.Charles Parsons - 1990 - Synthese 84 (3):303 - 346.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • A Subject with no Object.Zoltan Gendler Szabo, John P. Burgess & Gideon Rosen - 1999 - Philosophical Review 108 (1):106.
    This is the first systematic survey of modern nominalistic reconstructions of mathematics, and for this reason alone it should be read by everyone interested in the philosophy of mathematics and, more generally, in questions concerning abstract entities. In the bulk of the book, the authors sketch a common formal framework for nominalistic reconstructions, outline three major strategies such reconstructions can follow, and locate proposals in the literature with respect to these strategies. The discussion is presented with admirable precision and clarity, (...)
    Download  
     
    Export citation  
     
    Bookmark   154 citations  
  • (1 other version)Proofs and refutations (I).Imre Lakatos - 1963 - British Journal for the Philosophy of Science 14 (53):1-25.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • (1 other version)Mathematics without Numbers. Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1991 - Tijdschrift Voor Filosofie 53 (4):726-727.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • An answer to Hellman's question: ‘Does category theory provide a framework for mathematical structuralism?’.Steve Awodey - 2004 - Philosophia Mathematica 12 (1):54-64.
    An affirmative answer is given to the question quoted in the title.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • New Foundations for Mathematical Logic.W. V. Quine - 1937 - Journal of Symbolic Logic 2 (2):86-87.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Does category theory provide a framework for mathematical structuralism?Geoffrey Hellman - 2003 - Philosophia Mathematica 11 (2):129-157.
    Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Exploring Categorical Structuralism.C. Mclarty - 2004 - Philosophia Mathematica 12 (1):37-53.
    Hellman [2003] raises interesting challenges to categorical structuralism. He starts citing Awodey [1996] which, as Hellman sees, is not intended as a foundation for mathematics. It offers a structuralist framework which could denned in any of many different foundations. But Hellman says Awodey's work is 'naturally viewed in the context of Mac Lane's repeated claim that category theory provides an autonomous foundation for mathematics as an alternative to set theory' (p. 129). Most of Hellman's paper 'scrutinizes the formulation of category (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Foundations of mathematics for the working mathematician.N. Bourbaki - 1949 - Journal of Symbolic Logic 14 (1):1-8.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (2 other versions)Contributions to the Founding of the Theory of Transfinite Numbers.Cassius J. Keyser - 1916 - The Monist 26:638.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Logicism of Frege, Dedekind, and Russell.William Demopoulos & Peter Clark - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 129--165.
    The common thread running through the logicism of Frege, Dedekind, and Russell is their opposition to the Kantian thesis that our knowledge of arithmetic rests on spatio-temporal intuition. Our critical exposition of the view proceeds by tracing its answers to three fundamental questions: What is the basis for our knowledge of the infinity of the numbers? How is arithmetic applicable to reality? Why is reasoning by induction justified?
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Recantation or any old w-sequence would do after all.Paul Benacerraf - 1996 - Philosophia Mathematica 4 (2):184-189.
    What Numbers Could Not Be’) that an adequate account of the numbers and our arithmetic practice must satisfy not only the conditions usually recognized to be necessary: (a) identify some w-sequence as the numbers, and (b) correctly characterize the cardinality relation that relates a set to a member of that sequence as its cardinal number—it must also satisfy a third condition: the ‘<’ of the sequence must be recursive. This paper argues that adding this further condition was a mistake—any w-sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Category theory as a framework for an in re interpretation of mathematical structuralism.Elaine Landry - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 163--179.
    Download  
     
    Export citation  
     
    Bookmark   4 citations