Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Sets, classes, and categories.F. A. Muller - 2001 - British Journal for the Philosophy of Science 52 (3):539-573.
    This paper, accessible for a general philosophical audience having only some fleeting acquaintance with set-theory and category-theory, concerns the philosophy of mathematics, specifically the bearing of category-theory on the foundations of mathematics. We argue for six claims. (I) A founding theory for category-theory based on the primitive concept of a set or a class is worthwile to pursue. (II) The extant set-theoretical founding theories for category-theory are conceptually flawed. (III) The conceptual distinction between a set and a class can be (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Structuralist Mathematical Style: Bourbaki as a case study.Jean-Pierre Marquis - 2022 - In Claudio Ternullo Gianluigi Oliveri (ed.), Boston Studies in the Philosophy and the History of Science. pp. 199-231.
    In this paper, we look at Bourbaki’s work as a case study for the notion of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical style, namely the structuralist style.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rationality and Irrationality: Proceeedings of the 23rd International Wittgenstein Symposium, 13-19 August 2000, Kirchberg Am Wechsel.Berit Brogaard & Barry Smith (eds.) - 2001 - Öbv&Hpt.
    This volume consists of the invited papers presented at the 23rd International Wittgenstein Conference held in Kirchberg, Austria in August 2000. Among the topics treated are: truth, psychologism, science, the nature of rational discourse, practical reason, contextualism, vagueness, types of rationality, the rationality of religious belief, and Wittgenstein. Questions addressed include: Is rationality tied to special sorts of contexts? ls rationality tied to language? Is scientific rationality the only kind of rationality? Is there something like a Western rationality? and: Could (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalizing proofs in monadic languages.Matthias Baaz & Piotr Wojtylak - 2008 - Annals of Pure and Applied Logic 154 (2):71-138.
    This paper develops a proof theory for logical forms of proofs in the case of monadic languages. Among the consequences are different kinds of generalization of proofs in various schematic proof systems. The results use suitable relations between logical properties of partial proof data and algebraic properties of corresponding sets of linear diophantine equations.
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagrams in Mathematics.Carlo Cellucci - 2019 - Foundations of Science 24 (3):583-604.
    In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Pure and the Applied: Bourbakism Comes to Mathematical Economics.E. Roy Weintraub & Philip Mirowski - 1994 - Science in Context 7 (2):245-272.
    The ArgumentIn the minds of many, the Bourbakist trend in mathematics was characterized by pursuit of rigor to the detriment of concern for applications or didactic concessions to the nonmathematician, which would seem to render the concept of a Bourbakist incursion into a field of applied mathematices an oxymoron. We argue that such a conjuncture did in fact happen in postwar mathematical economics, and describe the career of Gérard Debreu to illustrate how it happened. Using the work of Leo Corry (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Withering Immortality of Nicolas Bourbaki: A Cultural Connector at the Confluence of Mathematics, Structuralism, and the Oulipo in France.David Aubin - 1997 - Science in Context 10 (2):297-342.
    The group of mathematicians known as Bourbaki persuasively proclaimed the isolation of its field of research – pure mathematics – from society and science. It may therefore seem paradoxical that links with larger French cultural movements, especially structuralism and potential literature, are easy to establish. Rather than arguing that the latter were a consequence of the former, which they were not, I show that all of these cultural movements, including the Bourbakist endeavor, emerged together, each strengthening the public appeal of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Husserl’s philosophy of mathematics: its origin and relevance. [REVIEW]Guillermo E. Rosado Haddock - 2006 - Husserl Studies 22 (3):193-222.
    This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Siting the New Economic Science: The Cowles Commission's Activity Analysis Conference of June 1949.Till Düppe & E. Roy Weintraub - 2014 - Science in Context 27 (3):453-483.
    ArgumentIn the decades following World War II, the Cowles Commission for Research in Economics came to represent new technical standards that informed most advances in economic theory. The public emergence of this community was manifest at a conference held in June 1949 titledActivity Analysis of Production and Allocation. New ideas in optimization theory, linked to linear programming, developed from the conference's papers. The authors’ history of this event situates the Cowles Commission among the institutions of postwar science in-between National Laboratories (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Bourbaki’s axiomatic system for set theory.Maribel Anacona, Luis Carlos Arboleda & F. Javier Pérez-Fernández - 2014 - Synthese 191 (17):4069-4098.
    In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign \(\uptau \) in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo–Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck’s proposal of adding to Bourbaki’s system the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pragmatism, intuitionism, and formalism.Henry A. Patin - 1957 - Philosophy of Science 24 (3):243-252.
    “… there is no distinction of meaning so fine as to consist in anything but a possible difference of practice.”“… Consider what effects, that might conceivably have practical bearings, we conceive the object of our conception to have. Then, our conception of these effects is the whole of our conception of the object.”One example which Peirce chose to illustrate his pragmatic maxim as thus stated was the familiar theological distinction between transubstantiation and consubstantiation. Now since these two doctrines agree in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathias and set theory.Akihiro Kanamori - 2016 - Mathematical Logic Quarterly 62 (3):278-294.
    On the occasion of his 70th birthday, the work of Adrian Mathias in set theory is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Husserl’s philosophy of mathematics: its origin and relevance.Guillermo Rosado Haddock - 2007 - Husserl Studies 22 (3):193-222.
    This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Marxism on dialectical and logical contradiction.D. Goldstick - 1995 - Australasian Journal of Philosophy 73 (1):102 – 113.
    Download  
     
    Export citation  
     
    Bookmark  
  • Correspondance Dieudonné-Cavaillès (1939).Jean Dieudonné & Gerhard Heinzmann - 2020 - Revue de Métaphysique et de Morale 106 (2):199-208.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Top-Down and Bottom-Up Philosophy of Mathematics.Carlo Cellucci - 2013 - Foundations of Science 18 (1):93-106.
    The philosophy of mathematics of the last few decades is commonly distinguished into mainstream and maverick, to which a ‘third way’ has been recently added, the philosophy of mathematical practice. In this paper the limitations of these trends in the philosophy of mathematics are pointed out, and it is argued that they are due to the fact that all of them are based on a top-down approach, that is, an approach which explains the nature of mathematics in terms of some (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Anti-Foundational Categorical Structuralism.Darren McDonald - unknown
    The aim of this dissertation is to outline and defend the view here dubbed “anti-foundational categorical structuralism” (henceforth AFCS). The program put forth is intended to provide an answer the question “what is mathematics?”. The answer here on offer adopts the structuralist view of mathematics, in that mathematics is taken to be “the science of structure” expressed in the language of category theory, which is argued to accurately capture the notion of a “structural property”. In characterizing mathematical theorems as both (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations