Switch to: References

Add citations

You must login to add citations.
  1. Categories for the working mathematician: making the impossible possible.Jessica Carter - 2008 - Synthese 162 (1):1-13.
    This paper discusses the notion of necessity in the light of results from contemporary mathematical practice. Two descriptions of necessity are considered. According to the first, necessarily true statements are true because they describe ‘unchangeable properties of unchangeable objects’. The result that I present is argued to provide a counterexample to this description, as it concerns a case where objects are moved from one category to another in order to change the properties of these objects. The second description concerns necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neither categorical nor set-theoretic foundations.Geoffrey Hellman - 2013 - Review of Symbolic Logic 6 (1):16-23.
    First we review highlights of the ongoing debate about foundations of category theory, beginning with Fefermantop-down” approach, where particular categories and functors need not be explicitly defined. Possible reasons for resisting the proposal are offered and countered. The upshot is to sustain a pluralism of foundations along lines actually foreseen by Feferman (1977), something that should be welcomed as a way of resolving this long-standing debate.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Category theory as an autonomous foundation.Øystein Linnebo & Richard Pettigrew - 2011 - Philosophia Mathematica 19 (3):227-254.
    Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Structuralism as a philosophy of mathematical practice.Jessica Carter - 2008 - Synthese 163 (2):119 - 131.
    This paper compares the statement ‘Mathematics is the study of structure’ with the actual practice of mathematics. We present two examples from contemporary mathematical practice where the notion of structure plays different roles. In the first case a structure is defined over a certain set. It is argued firstly that this set may not be regarded as a structure and secondly that what is important to mathematical practice is the relation that exists between the structure and the set. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal and Hyperintensional Cognitivism and Modal and Hyperintensional Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal and hyperintensional cognitivism and modal and hyperintensional expressivism. I argue that epistemic modal algebras, endowed with a hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics, comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are categorically dual. I examine five methods for modeling the dynamics of conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific phenomena and patterns in data.Pascal Ströing - 2018 - Dissertation, Lmu München
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)From bayesianism to the epistemic view of mathematics: Richard Jeffrey. Subjective probability: The real thing. Cambridge: Cambridge university press, 2004. Isbn 0-521-82971-2 , 0-521-53668-5 . Pp. XVI + 124. [REVIEW]J. Williamson - 2006 - Philosophia Mathematica 14 (3):365-369.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Mathematical Description of a Generic Physical System.Federico Zalamea - 2015 - Topoi 34 (2):339-348.
    When dealing with a certain class of physical systems, the mathematical characterization of a generic system aims to describe the phase portrait of all its possible states. Because they are defined only up to isomorphism, the mathematical objects involved are “schematic structures”. If one imposes the condition that these mathematical definitions completely capture the physical information of a given system, one is led to a strong requirement of individuation for physical states. However, we show there are not enough qualitatively distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categories without Structures.Andrei Rodin - 2011 - Philosophia Mathematica 19 (1):20-46.
    The popular view according to which category theory provides a support for mathematical structuralism is erroneous. Category-theoretic foundations of mathematics require a different philosophy of mathematics. While structural mathematics studies ‘invariant form’ (Awodey) categorical mathematics studies covariant and contravariant transformations which, generally, have no invariants. In this paper I develop a non-structuralist interpretation of categorical mathematics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A scientific enterprise?: A critical study of P. Maddy, Second Philosophy: A Naturalistic Method[REVIEW]Stewart Shapiro & Patrick Reeder - 2009 - Philosophia Mathematica 17 (2):247-271.
    For almost twenty years, Penelope Maddy has been one of the most consistent expositors and advocates of naturalism in philosophy, with a special focus on the philosophy of mathematics, set theory in particular. Over that period, however, the term ‘naturalism’ has come to mean many things. Although some take it to be a rejection of the possibility of a priori knowledge, there are philosophers calling themselves ‘naturalists’ who willingly embrace and practice an a priori methodology, not a whole lot different (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Bourbaki Has and Has Not Given Us.Enetz Ezenarro Arriola - 2017 - Theoria : An International Journal for Theory, History and Fundations of Science 32 (1).
    Bourbaki showed us the potential inherent within the concept of mathematical structure for re-organizing, systematically arranging and unifying the mathematical framework. But mathematics’ development in recent decades has flagged up the limitations of this approach. In this article we analyse Bourbaki’s contributions to what we term the “internal” foundations of mathematics, and at the same time we indicate where, in our view, they fall short. We go on to outline some of the evidence on which we base the viewpoint termed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conceptual Structuralism.José Ferreirós - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):125-148.
    This paper defends a conceptualistic version of structuralism as the most convincing way of elaborating a philosophical understanding of structuralism in line with the classical tradition. The argument begins with a revision of the tradition of “conceptual mathematics”, incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or Noether, showing how it led to a structuralist methodology. Then the tension between the ‘presuppositionless’ approach of those authors, and the platonism of some recent versions of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Apofatyzm filozoficzny a Michała Hellera idea matematyczności przyrody.Wojciech P. Grygiel - 2022 - Roczniki Filozoficzne 70 (2):227-245.
    Wychodząc od usystematyzowania hellerowskiej tezy o matematyczności przyrody, niniejsze studium poświęcone głównie będzie pokazaniu i krytycznej ocenie racji, wedle których Heller desygnuje teorię kategorii jako matematyczne środowisko szczególnie predestynowane dla wyartykułowania tej tezy. Kluczowe w tym kontekście będzie wskazanie, co uprawnia go do wprowadzenia mającej istotne ontologiczne znaczenie koncepcji pola kategorii i utożsamienia go z polem racjonalności. Ostatecznie stanie się możliwe lepsze zrozumienie, w jakim sensie w kontekście sformalizowanych teorii fizycznych Heller operuje pojęciem apofatyzmu filozoficznego, który wydaje się trafnie ujmować (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Modal Cognitivism and Modal Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought, and endeavor to show how such algebras provide the resources necessary to resolve Russell's paradox of propositions. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dually isomorphic. I examine, in particular, the virtues (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and the problem of compatible explanations: A reply to ‘Should scientific realists be platonists?’.Josh Hunt - 2016 - Synthese 193 (2):451-467.
    Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How to be a structuralist all the way down.Elaine Landry - 2011 - Synthese 179 (3):435 - 454.
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the "algebraic" approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a "foundation", (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On three arguments against categorical structuralism.Makmiller Pedroso - 2009 - Synthese 170 (1):21 - 31.
    Some mathematicians and philosophers contend that set theory plays a foundational role in mathematics. However, the development of category theory during the second half of the twentieth century has encouraged the view that this theory can provide a structuralist alternative to set-theoretical foundations. Against this tendency, criticisms have been made that category theory depends on set-theoretical notions and, because of this, category theory fails to show that set-theoretical foundations are dispensable. The goal of this paper is to show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Learning from questions on categorical foundations.Colin McLarty - 2005 - Philosophia Mathematica 13 (1):44-60.
    We can learn from questions as well as from their answers. This paper urges some things to learn from questions about categorical foundations for mathematics raised by Geoffrey Hellman and from ones he invokes from Solomon Feferman.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Critical Studies/Book Reviews.Hans-Christoph Kotzsch - forthcoming - Philosophia Mathematica:nkab026.
    _Stefania Centrone, Deborah Kant_, and _Deniz Sarikaya_, eds, _ Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory, and General Thoughts _. Studies in Epistemology, Logic, Methodology, and Philosophy of Science; 407. Springer, 2019. Pp. xxviii + 494. ISBN: 978-3-030-15654-1 ; 978-3-030-15655-8. doi.org/10.1007/978-3-030-15655-8† †.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Cognitivism and Modal Expressivism.Hasen Khudairi - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dual. I examine, in particular, the virtues unique to the modal expressivist approach here proffered in the setting of the foundations of mathematics, by contrast (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part A†.Hannes Leitgeb - 2020 - Philosophia Mathematica 28 (3):317-346.
    This is Part A of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A summarizes the general attractions of non-eliminative structuralism. Afterwards, it motivates an understanding of unlabeled graphs as structures sui generis and develops a corresponding axiomatic theory of unlabeled graphs. As the theory demonstrates, graph theory can be developed consistently without eliminating unlabeled graphs in favour of sets; and the usual structuralist criterion of identity can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Teoria kategorii i niektóre jej logiczne aspekty (Category theory and some of its logical aspects).Mariusz Stopa - 2018 - Philosophical Problems in Science 64:7-58.
    [The paper is in Polish, an English abstract is given only for information.] This article is intended for philosophers and logicians as a short partial introduction to category theory and its peculiar connection with logic. First, we consider CT itself. We give a brief insight into its history, introduce some basic definitions and present examples. In the second part, we focus on categorical topos semantics for propositional logic. We give some properties of logic in toposes, which, in general, is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categories for the Neologicist.Shay Allen Logan - 2017 - Philosophia Mathematica 25 (1):26-44.
    Abstraction principles provide implicit definitions of mathematical objects. In this paper, an abstraction principle defining categories is proposed. It is unsatisfiable and inconsistent in the expected ways. Two restricted versions of the principle which are consistent are presented.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical structuralism today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The genetic versus the axiomatic method: Responding to Feferman 1977: The genetic versus the axiomatic method: Responding to Feferman 1977.Elaine Landry - 2013 - Review of Symbolic Logic 6 (1):24-51.
    Feferman argues that category theory cannot stand on its own as a structuralist foundation for mathematics: he claims that, because the notions of operation and collection are both epistemically and logically prior, we require a background theory of operations and collections. Recently [2011], I have argued that in rationally reconstructing Hilbert’s organizational use of the axiomatic method, we can construct an algebraic version of category-theoretic structuralism. That is, in reply to Shapiro, we can be structuralists all the way down ; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categorical Generalization and Physical Structuralism: Figure 1.Raymond Lal & Nicholas Teh - 2017 - British Journal for the Philosophy of Science 68 (1).
    Category theory has become central to certain aspects of theoretical physics. Bain has recently argued that this has significance for ontic structural realism. We argue against this claim. In so doing, we uncover two pervasive forms of category-theoretic generalization. We call these ‘generalization by duality’ and ‘generalization by categorifying physical processes’. We describe in detail how these arise, and explain their significance using detailed examples. We show that their significance is two-fold: the articulation of high-level physical concepts, and the generation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reconstructing Hilbert to construct category theoretic structuralism.Elaine Landry - unknown
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the “algebraic” approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a “foundation”, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanatory frameworks in complex change and resilience system modelling.Mark Addis & Claudia Eckert - forthcoming - Logic Journal of the IGPL.
    Heterogenous flows across system boundaries continue to pose significant problems for efficient resource allocation especially with respect to long term strategic planning and immediate problems about allocation to address particular resource shortages. The approach taken here to modelling such flows is an engineering change prediction one. This enables margin modelling by producing system models in dependency matrices with different linkage types. Change prediction approaches from engineering design can analyse where these bottlenecks in integrated systems would be so that resources can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An argument against nominalism.Francesco Maria Ferrari - 2022 - Synthese 200 (5):1-23.
    Nominalism in formal ontology is still the thesis that the only acceptable domain of quantification is the first-order domain of particulars. Nominalists may assert that second-order well-formed formulas can be fully and completely interpreted within the first-order domain, thereby avoiding any ontological commitment to second-order entities, by means of an appropriate semantics called “substitutional”. In this paper I argue that the success of this strategy depends on the ability of Nominalists to maintain that identity, and equivalence relations more in general, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Beyond Transcendentalism and Naturalization: A Categorial Framework for the Semiotic Phenomenology.Martina Properzi - 2019 - International Journal of Philosophy 7 (3):122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatic Method and Category Theory.Rodin Andrei - 2013 - Cham: Imprint: Springer.
    This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a new epistemology of mathematics.Bernd Buldt, Benedikt Löwe & Thomas Müller - 2008 - Erkenntnis 68 (3):309 - 329.
    In this introduction we discuss the motivation behind the workshop “Towards a New Epistemology of Mathematics” of which this special issue constitutes the proceedings. We elaborate on historical and empirical aspects of the desired new epistemology, connect it to the public image of mathematics, and give a summary and an introduction to the contributions to this issue.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Methodological Roles of Tolerance and Conventionalism in the Philosophy of Mathematics: Reconsidering Carnap's Logic of Science.Emerson P. Doyle - 2014 - Dissertation, University of Western Ontario
    This dissertation makes two primary contributions. The first three chapters develop an interpretation of Carnap's Meta-Philosophical Program which places stress upon his methodological analysis of the sciences over and above the Principle of Tolerance. Most importantly, I suggest, is that Carnap sees philosophy as contiguous with science—as a part of the scientific enterprise—so utilizing the very same methods and subject to the same limitations. I argue that the methodological reforms he suggests for philosophy amount to philosophy as the explication of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structuralism and Meta-Mathematics.Simon Friederich - 2010 - Erkenntnis 73 (1):67 - 81.
    The debate on structuralism in the philosophy of mathematics has brought into focus a question about the status of meta-mathematics. It has been raised by Shapiro (2005), where he compares the ongoing discussion on structuralism in category theory to the Frege-Hilbert controversy on axiomatic systems. Shapiro outlines an answer according to which meta-mathematics is understood in structural terms and one according to which it is not. He finds both options viable and does not seem to prefer one over the other. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stefania Centrone, Deborah Kant, and Deniz Sarikaya, eds, Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory, and General Thoughts.Hans-Christoph Kotzsch - 2022 - Philosophia Mathematica 30 (1):88-102.
    Download  
     
    Export citation  
     
    Bookmark  
  • Life on the Ship of Neurath: Mathematics in the Philosophy of Mathematics.Stewart Shapiro - 2012 - Croatian Journal of Philosophy 26 (2):11--27.
    Some central philosophical issues concern the use of mathematics in putatively non-mathematical endeavors. One such endeavor, of course, is philosophy, and the philosophy of mathematics is a key instance of that. The present article provides an idiosyncratic survey of the use of mathematical results to provide support or counter-support to various philosophical programs concerning the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward a hermeneutic categorical mathematics or why category theory does not support mathematical structuralism.Andrei Rodin - unknown
    In this paper I argue that Category theory provides an alternative to Hilbert’s Formal Axiomatic method and doesn't support Mathematical Structuralism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation