Switch to: Citations

Add references

You must login to add references.
  1. From Geometry to Conceptual Relativity.Thomas William Barrett & Hans Halvorson - 2017 - Erkenntnis 82 (5):1043-1063.
    The purported fact that geometric theories formulated in terms of points and geometric theories formulated in terms of lines are “equally correct” is often invoked in arguments for conceptual relativity, in particular by Putnam and Goodman. We discuss a few notions of equivalence between first-order theories, and we then demonstrate a precise sense in which this purported fact is true. We argue, however, that this fact does not undermine metaphysical realism.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Morita Equivalence.Thomas William Barrett & Hans Halvorson - 2016 - Review of Symbolic Logic 9 (3):556-582.
    Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well-known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Model Theory: An Introduction.David Marker - 2003 - Bulletin of Symbolic Logic 9 (3):408-409.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Introduction to Logic.Roland Hall - 1960 - Philosophical Quarterly 10 (40):287-288.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • One or Two Gentle Remarks about Hans Halvorson’s Critique of the Semantic View.Bas C. van Fraassen - 2014 - Philosophy of Science 81 (2):276-283,.
    In recent papers Hans Halvorson has offered a critique of the semantic view of theories, showing that theories may be the same although the corresponding sets of models are different and, conversely, that theories may be different although the corresponding sets of models are the same. This critique will be assessed, first, as it pertains to issues concerning scientific models in the empirical sciences and, second, independent of any concern with empirical science.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Quine’s conjecture on many-sorted logic.Thomas William Barrett & Hans Halvorson - 2017 - Synthese 194 (9):3563-3582.
    Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Interpretations of Arithmetic and Set Theory.Richard Kaye & Tin Lok Wong - 2007 - Notre Dame Journal of Formal Logic 48 (4):497-510.
    This paper starts by investigating Ackermann's interpretation of finite set theory in the natural numbers. We give a formal version of this interpretation from Peano arithmetic (PA) to Zermelo-Fraenkel set theory with the infinity axiom negated (ZF−inf) and provide an inverse interpretation going the other way. In particular, we emphasize the precise axiomatization of our set theory that is required and point out the necessity of the axiom of transitive containment or (equivalently) the axiom scheme of ∈-induction. This clarifies the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On the logic of reducibility: Axioms and examples. [REVIEW]Karl-Georg Niebergall - 2000 - Erkenntnis 53 (1-2):27-61.
    This paper is an investigation into what could be a goodexplication of ``theory S is reducible to theory T''''. Ipresent an axiomatic approach to reducibility, which is developedmetamathematically and used to evaluate most of the definitionsof ``reducible'''' found in the relevant literature. Among these,relative interpretability turns out to be most convincing as ageneral reducibility concept, proof-theoreticalreducibility being its only serious competitor left. Thisrelation is analyzed in some detail, both from the point of viewof the reducibility axioms and of modal logic.
    Download  
     
    Export citation  
     
    Bookmark   13 citations