Switch to: References

Add citations

You must login to add citations.
  1. On Type Distinctions and Expressivity.Salvatore Florio - 2023 - Proceedings of the Aristotelian Society 123 (2):150-172.
    Quine maintained that philosophical and scientific theorizing should be conducted in an untyped language, which has just one style of variables and quantifiers. By contrast, typed languages, such as those advocated by Frege and Russell, include multiple styles of variables and matching kinds of quantification. Which form should our theories take? In this article, I argue that expressivity does not favour typed languages over untyped ones.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closing the Hole Argument.Hans Halvorson & John Byron Manchak - forthcoming - British Journal for the Philosophy of Science.
    The hole argument purportedly shows that spacetime substantivalism implies a pernicious form of indeterminism. We show that the argument is seductive only because it mistakes a trivial claim (viz. there are isomorphic models) for a significant claim (viz. there are hole isomorphisms). We prove that the latter claim is false -- thereby closing the debate about whether substantivalism implies indeterminism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to count structure.Thomas William Barrett - 2022 - Noûs 56 (2):295-322.
    There is sometimes a sense in which one theory posits ‘less structure’ than another. Philosophers of science have recently appealed to this idea both in the debate about equivalence of theories and in discussions about structural parsimony. But there are a number of different proposals currently on the table for how to compare the ‘amount of structure’ that different theories posit. The aim of this paper is to compare these proposals against one another and evaluate them on their own merits.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mutual translatability, equivalence, and the structure of theories.Thomas William Barrett & Hans Halvorson - 2022 - Synthese 200 (3):1-36.
    This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Morita Equivalence.Thomas William Barrett & Hans Halvorson - 2016 - Review of Symbolic Logic 9 (3):556-582.
    Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well-known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • (1 other version)On Morita equivalence and interpretability.Paul Anh Mceldowney - 2020 - Review of Symbolic Logic 13 (2):388-415.
    In a recent article, Barrett & Halvorson define a notion of equivalence for first-order theories, which they call “Morita equivalence.” To argue that Morita equivalence is a reasonable measure of “theoretical equivalence,” they make use of the claim that Morita extensions “say no more” than the theories they are extending. The goal of this article is to challenge this central claim by raising objections to their argument for it and by showing why there is good reason to think that the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Equivalent and Inequivalent Formulations of Classical Mechanics.Thomas William Barrett - 2019 - British Journal for the Philosophy of Science 70 (4):1167-1199.
    In this article, I examine whether or not the Hamiltonian and Lagrangian formulations of classical mechanics are equivalent theories. I do so by applying a standard for equivalence that was recently introduced into philosophy of science by Halvorson and Weatherall. This case study yields three general philosophical payoffs. The first concerns what a theory is, while the second and third concern how we should interpret what our physical theories say about the world. 1Introduction 2When Are Two Theories Equivalent? 3Preliminaries on (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Categories of scientific theories.Hans Halvorson & Dimitris Tsementzis - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    We discuss ways in which category theory might be useful in philosophy of science, in particular for articulating the structure of scientific theories. We argue, moreover, that a categorical approach transcends the syntax-semantics dichotomy in 20th century analytic philosophy of science.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • From Geometry to Conceptual Relativity.Thomas William Barrett & Hans Halvorson - 2017 - Erkenntnis 82 (5):1043-1063.
    The purported fact that geometric theories formulated in terms of points and geometric theories formulated in terms of lines are “equally correct” is often invoked in arguments for conceptual relativity, in particular by Putnam and Goodman. We discuss a few notions of equivalence between first-order theories, and we then demonstrate a precise sense in which this purported fact is true. We argue, however, that this fact does not undermine metaphysical realism.
    Download  
     
    Export citation  
     
    Bookmark   17 citations