Switch to: Citations

Add references

You must login to add references.
  1. Discernible elements in models for peano arithmetic.Andrzej Ehrenfeucht - 1973 - Journal of Symbolic Logic 38 (2):291-292.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Automorphisms of recursively saturated models of arithmetic.Richard Kaye, Roman Kossak & Henryk Kotlarski - 1991 - Annals of Pure and Applied Logic 55 (1):67-99.
    We give an examination of the automorphism group Aut of a countable recursively saturated model M of PA. The main result is a characterisation of strong elementary initial segments of M as the initial segments consisting of fixed points of automorphisms of M. As a corollary we prove that, for any consistent completion T of PA, there are recursively saturated countable models M1, M2 of T, such that Aut[ncong]Aut, as topological groups with a natural topology. Other results include a classification (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Moving Intersticial Gaps.James H. Schmerl - 2002 - Mathematical Logic Quarterly 48 (2):283-296.
    In a countable, recursively saturated model of Peano Arithmetic, an interstice is a maximal convex set which does not contain any definable elements. The interstices are partitioned into intersticial gaps in a way that generalizes the partition of the unbounded interstice into gaps. Continuing work of Bamber and Kotlarski [1], we investigate extensions of Kotlarski's Moving Gaps Lemma to the moving of intersticial gaps.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On interstices of countable arithmetically saturated models of Peano arithmetic.Nicholas Bamber & Henryk Kotlarski - 1997 - Mathematical Logic Quarterly 43 (4):525-540.
    We give some information about the action of Aut on M, where M is a countable arithmetically saturated model of Peano Arithmetic. We concentrate on analogues of moving gaps and covering gaps inside M.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On maximal subgroups of the automorphism group of a countable recursively saturated model of PA.Roman Kossak, Henryk Kotlarski & James H. Schmerl - 1993 - Annals of Pure and Applied Logic 65 (2):125-148.
    We show that the stabilizer of an element a of a countable recursively saturated model of arithmetic M is a maximal subgroup of Aut iff the type of a is selective. This is a point of departure for a more detailed study of the relationship between pointwise and setwise stabilizers of certain subsets of M and the types of elements in those subsets. We also show that a complete type of PA is 2-indiscernible iff it is minimal in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Remarks on weak notions of saturation in models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1987 - Journal of Symbolic Logic 52 (1):129-148.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Models and types of Peano's arithmetic.Haim Gaifman - 1976 - Annals of Mathematical Logic 9 (3):223-306.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Automorphism Groups of Arithmetically Saturated Models.Ermek S. Nurkhaidarov - 2006 - Journal of Symbolic Logic 71 (1):203 - 216.
    In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that ifMis a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2be countable arithmetically saturated models of Peano (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Strongly maximal subgroups determined by elements in interstices.Teresa Bigorajska - 2003 - Mathematical Logic Quarterly 49 (1):101-108.
    Continuing the earlier research in [1] and [4] we work out a class of interstices in countable arithmetically saturated models of PA in which selective types are realized and a class of interstices in which 2-indiscernible types are realized.
    Download  
     
    Export citation  
     
    Bookmark   2 citations