Switch to: Citations

Add references

You must login to add references.
  1. Modal logic with names.George Gargov & Valentin Goranko - 1993 - Journal of Philosophical Logic 22 (6):607 - 636.
    We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ ⍯φ (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • (1 other version)Modal Logic.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - Studia Logica 76 (1):142-148.
    Download  
     
    Export citation  
     
    Bookmark   393 citations  
  • Nominal tense logic.Patrick Blackburn - 1992 - Notre Dame Journal of Formal Logic 34 (1):56-83.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Term-modal logics.Melvin Fitting, Lars Thalmann & Andrei Voronkov - 2001 - Studia Logica 69 (1):133-169.
    Many powerful logics exist today for reasoning about multi-agent systems, but in most of these it is hard to reason about an infinite or indeterminate number of agents. Also the naming schemes used in the logics often lack expressiveness to name agents in an intuitive way.To obtain a more expressive language for multi-agent reasoning and a better naming scheme for agents, we introduce a family of logics called term-modal logics. A main feature of our logics is the use of modal (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Equality and monodic first-order temporal logic.Anatoli Degtyarev, Michael Fisher & Alexei Lisitsa - 2002 - Studia Logica 72 (2):147-156.
    It has been shown recently that monodic first-order temporal logic without functional symbols but with equality is incomplete, i.e., the set of the valid formulae of this logic is not recursively enumerable. In this paper we show that an even simpler fragment consisting of monodic monadic two-variable formulae is not recursively enumerable.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Many-Dimensional Modal Logics: Theory and Applications.D. M. Gabbay, A. Kurucz, F. Wolter & M. Zakharyaschev - 2005 - Studia Logica 81 (1):147-150.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • (1 other version)REVIEWS-Many-dimensional modal logics: Theory and applications.D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev & Mark Reynolds - 2005 - Bulletin of Symbolic Logic 11 (1):77-78.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatizing the monodic fragment of first-order temporal logic.Frank Wolter & Michael Zakharyaschev - 2002 - Annals of Pure and Applied Logic 118 (1-2):133-145.
    It is known that even seemingly small fragments of the first-order temporal logic over the natural numbers are not recursively enumerable. In this paper we show that the monodic fragment is an exception by constructing its finite Hilbert-style axiomatization. We also show that the monodic fragment with equality is not recursively axiomatizable.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Rational Dynamics and Epistemic Logic in Games.Johan van Benthem - unknown
    Game-theoretic solution concepts describe sets of strategy profiles that are optimal for all players in some plausible sense. Such sets are often found by recursive algorithms like iterated removal of strictly dominated strategies in strategic games, or backward induction in extensive games. Standard logical analyses of solution sets use assumptions about players in fixed epistemic models for a given game, such as mutual knowledge of rationality. In this paper, we propose a different perspective, analyzing solution algorithms as processes of learning (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations