Switch to: Citations

Add references

You must login to add references.
  1. On strong provability predicates and the associated modal logics.Konstantin N. Ignatiev - 1993 - Journal of Symbolic Logic 58 (1):249-290.
    PA is Peano Arithmetic. Pr(x) is the usual Σ1-formula representing provability in PA. A strong provability predicate is a formula which has the same properties as Pr(·) but is not Σ1. An example: Q is ω-provable if PA + ¬ Q is ω-inconsistent (Boolos [4]). In [5] Dzhaparidze introduced a joint provability logic for iterated ω-provability and obtained its arithmetical completeness. In this paper we prove some further modal properties of Dzhaparidze's logic, e.g., the fixed point property and the Craig (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On Provability Logics with Linearly Ordered Modalities.Lev D. Beklemishev, David Fernández-Duque & Joost J. Joosten - 2014 - Studia Logica 102 (3):541-566.
    We introduce the logics GLP Λ, a generalization of Japaridze’s polymodal provability logic GLP ω where Λ is any linearly ordered set representing a hierarchy of provability operators of increasing strength. We shall provide a reduction of these logics to GLP ω yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP Λ and the decidability of GLP Λ for recursive orderings Λ. Further, we give a restricted axiomatization of the variable-free fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The decision problem of provability logic with only one atom.Vítězslav Švejdar - 2003 - Archive for Mathematical Logic 42 (8):763-768.
    The decision problem for provability logic remains PSPACE-complete even if the number of propositional atoms is restricted to one.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)PSPACE-decidability of Japaridze's polymodal logic.Ilya Shapirovsky - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 289-304.
    Download  
     
    Export citation  
     
    Bookmark   2 citations