Switch to: Citations

Add references

You must login to add references.
  1. Provability of the pigeonhole principle and the existence of infinitely many primes.J. B. Paris, A. J. Wilkie & A. R. Woods - 1988 - Journal of Symbolic Logic 53 (4):1235-1244.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Pell equations and exponentiation in fragments of arithmetic.Paola D'Aquino - 1996 - Annals of Pure and Applied Logic 77 (1):1-34.
    We study the relative strength of the two axioms Every Pell equation has a nontrivial solution Exponentiation is total over weak fragments, and we show they are equivalent over IE1. We then define the graph of the exponential function using only existentially bounded quantifiers in the language of arithmetic expanded with the symbol #, where # = x[log2y]. We prove the recursion laws of exponentiation in the corresponding fragment.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)A recursive nonstandard model of normal open induction.Alessandro Berarducci & Margarita Otero - 1996 - Journal of Symbolic Logic 61 (4):1228-1241.
    Models of normal open induction are those normal discretely ordered rings whose nonnegative part satisfy Peano's axioms for open formulas in the language of ordered semirings. (Where normal means integrally closed in its fraction field.) In 1964 Shepherdson gave a recursive nonstandard model of open induction. His model is not normal and does not have any infinite prime elements. In this paper we present a recursive nonstandard model of normal open induction with an unbounded set of infinite prime elements.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Diophantine Induction.Richard Kaye - 1990 - Annals of Pure and Applied Logic 46 (1):1-40.
    We show that Matijasevič's Theorem on the diophantine representation of r.e. predicates is provable in the subsystem I ∃ - 1 of Peano Arithmetic formed by restricting the induction scheme to diophantine formulas with no parameters. More specifically, I ∃ - 1 ⊢ IE - 1 + E ⊢ Matijasevič's Theorem where IE - 1 is the scheme of parameter-free bounded existential induction and E is an ∀∃ axiom expressing the existence of a function of exponential growth. We conclude by (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the complexity of models of arithmetic.Kenneth McAloon - 1982 - Journal of Symbolic Logic 47 (2):403-415.
    Let P 0 be the subsystem of Peano arithmetic obtained by restricting induction to bounded quantifier formulas. Let M be a countable, nonstandard model of P 0 whose domain we suppose to be the standard integers. Let T be a recursively enumerable extension of Peano arithmetic all of whose existential consequences are satisfied in the standard model. Then there is an initial segment M ' of M which is a model of T such that the complete diagram of M ' (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Non-Standard Model for a Free Variable Fragment of Number Theory.J. C. Shepherdson - 1965 - Journal of Symbolic Logic 30 (3):389-390.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Bounded existential induction.George Wilmers - 1985 - Journal of Symbolic Logic 50 (1):72-90.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the scheme of induction for bounded arithmetic formulas.A. J. Wilkie & J. B. Paris - 1987 - Annals of Pure and Applied Logic 35 (C):261-302.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Combinatorial principles in elementary number theory.Alessandro Berarducci & Benedetto Intrigila - 1991 - Annals of Pure and Applied Logic 55 (1):35-50.
    We prove that the theory IΔ0, extended by a weak version of the Δ0-Pigeonhole Principle, proves that every integer is the sum of four squares (Lagrange's theorem). Since the required weak version is derivable from the theory IΔ0 + ∀x (xlog(x) exists), our results give a positive answer to a question of Macintyre (1986). In the rest of the paper we consider the number-theoretical consequences of a new combinatorial principle, the ‘Δ0-Equipartition Principle’ (Δ0EQ). In particular we give a new proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations