Switch to: Citations

Add references

You must login to add references.
  1. The logic of paradox.Graham Priest - 1979 - Journal of Philosophical Logic 8 (1):219 - 241.
    Download  
     
    Export citation  
     
    Bookmark   475 citations  
  • Intuitive semantics for first-degree entailments and 'coupled trees'.J. Michael Dunn - 1976 - Philosophical Studies 29 (3):149-168.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • How a computer should think.Nuel Belnap - 1977 - In Gilbert Ryle (ed.), Contemporary aspects of philosophy. Boston: Oriel Press.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • (1 other version)On notation for ordinal numbers.S. C. Kleene - 1938 - Journal of Symbolic Logic 3 (4):150-155.
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Nothing but the Truth.Andreas Pietz & Umberto Rivieccio - 2013 - Journal of Philosophical Logic 42 (1):125-135.
    A curious feature of Belnap’s “useful four-valued logic”, also known as first-degree entailment (FDE), is that the overdetermined value B (both true and false) is treated as a designated value. Although there are good theoretical reasons for this, it seems prima facie more plausible to have only one of the four values designated, namely T (exactly true). This paper follows this route and investigates the resulting logic, which we call Exactly True Logic.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single finite logical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A useful four-valued logic.N. D. Belnap - 1977 - In J. M. Dunn & G. Epstein (eds.), Modern Uses of Multiple-Valued Logic. D. Reidel.
    Download  
     
    Export citation  
     
    Bookmark   262 citations  
  • Gentzen's cut-free calculus versus the logic of paradox.Alexej P. Pynko - 2010 - Bulletin of the Section of Logic 39 (1/2):35-42.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Correspondences between Gentzen and Hilbert Systems.J. G. Raftery - 2006 - Journal of Symbolic Logic 71 (3):903 - 957.
    Most Gentzen systems arising in logic contain few axiom schemata and many rule schemata. Hilbert systems, on the other hand, usually contain few proper inference rules and possibly many axioms. Because of this, the two notions tend to serve different purposes. It is common for a logic to be specified in the first instance by means of a Gentzen calculus, whereupon a Hilbert-style presentation ‘for’ the logic may be sought—or vice versa. Where this has occurred, the word ‘for’ has taken (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Characterizing Belnap's Logic via De Morgan's Laws.Alexej P. Pynko - 1995 - Mathematical Logic Quarterly 41 (4):442-454.
    The aim of this paper is technically to study Belnap's four-valued sentential logic . First, we obtain a Gentzen-style axiomatization of this logic that contains no structural rules while all they are still admissible in the Gentzen system what is proved with using some algebraic tools. Further, the mentioned logic is proved to be the least closure operator on the set of {Λ, V, ⌝}-formulas satisfying Tarski's conditions for classical conjunction and disjunction together with De Morgan's laws for negation. It (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Syntactical and semantical properties of simple type theory.Kurt Schütte - 1960 - Journal of Symbolic Logic 25 (4):305-326.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • About some symmetries of negation.Brigitte Hösli & Gerhard Jäger - 1994 - Journal of Symbolic Logic 59 (2):473-485.
    This paper deals with some structural properties of the sequent calculus and describes strong symmetries between cut-free derivations and derivations, which do not make use of identity axioms. Both of them are discussed from a semantic and syntactic point of view. Identity axioms and cuts are closely related to the treatment of negation in the sequent calculus, so the results of this article explain some nice symmetries of negation.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Which Structural Rules Admit Cut Elimination? An Algebraic Criterion.Kazushige Terui - 2007 - Journal of Symbolic Logic 72 (3):738 - 754.
    Consider a general class of structural inference rules such as exchange, weakening, contraction and their generalizations. Among them, some are harmless but others do harm to cut elimination. Hence it is natural to ask under which condition cut elimination is preserved when a set of structural rules is added to a structure-free logic. The aim of this work is to give such a condition by using algebraic semantics. We consider full Lambek calculus (FL), i.e., intuitionistic logic without any structural rules, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Belnap's four-valued logic and De Morgan lattices.Josep Font - 1997 - Logic Journal of the IGPL 5 (1):1--29.
    This paper contains some contributions to the study of Belnap's four-valued logic from an algebraic point of view. We introduce a finite Hilbert-style axiomatization of this logic, along with its well-known semantical presentation, and a Gentzen calculus that slightly differs from the usual one in that it is closer to Anderson and Belnap's formalization of their “logic of first-degree entailments”. We prove several Completeness Theorems and reduce every formula to an equivalent normal form. The Hilbert-style presentation allows us to characterize (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • A General Algebraic Semantics for Sentential Logics.Josep M. Font & Ramon Jansana - 2000 - Studia Logica 64 (2):287-297.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Subprevarieties Versus Extensions. Application to the Logic of Paradox.Alexej P. Pynko - 2000 - Journal of Symbolic Logic 65 (2):756-766.
    In the present paper we prove that the poset of all extensions of the logic defined by a class of matrices whose sets of distinguished values are equationally definable by their algebra reducts is the retract, under a Galois connection, of the poset of all subprevarieties of the prevariety generated by the class of the algebra reducts of the matrices involved. We apply this general result to the problem of finding and studying all extensions of the logic of paradox. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations