Switch to: Citations

Add references

You must login to add references.
  1. Ideen zu einer reinen phänomenologie und phänomenologischen philosophie.Edmund Husserl - 1929 - Halle a.d. S.,: M. Niemeyer.
    Mit den "Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie" von 1913, von ihm selbst nur als eine "Allgemeine Einführung in die reine Phänomenologie" angezeigt, zog Edmund Husserl die Konsequenz aus seinen Logischen Untersuchungen (PhB 601), die ihn 1900/01 berühmt gemacht hatten: Ausgehend von der dort entwickelten Phänomenologie der intentionalen Erlebnisse sieht er jetzt in der Aufdeckung der Leistungen des "reinen Bewußtseins", dem die uns bekannte natürliche Welt nur als "Bewußtseinskorrelat" gegeben ist, den eigentlichen Gegenstand philosophischer Erkenntnis und in den (...)
    Download  
     
    Export citation  
     
    Bookmark   420 citations  
  • Platonism and anti-Platonism in mathematics.Mark Balaguer - 1998 - New York: Oxford University Press.
    In this book, Balaguer demonstrates that there are no good arguments for or against mathematical platonism. He does this by establishing that both platonism and anti-platonism are defensible views. Introducing a form of platonism ("full-blooded platonism") that solves all problems traditionally associated with the view, he proceeds to defend anti-platonism (in particular, mathematical fictionalism) against various attacks, most notably the Quine-Putnam indispensability attack. He concludes by arguing that it is not simply that we do not currently have any good argument (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Platonism and Anti-Platonism in Mathematics.Mark Balaguer - 1998 - Bulletin of Symbolic Logic 8 (4):516-518.
    This book does three main things. First, it defends mathematical platonism against the main objections to that view (most notably, the epistemological objection and the multiple-reductions objection). Second, it defends anti-platonism (in particular, fictionalism) against the main objections to that view (most notably, the Quine-Putnam indispensability objection and the objection from objectivity). Third, it argues that there is no fact of the matter whether abstract mathematical objects exist and, hence, no fact of the matter whether platonism or anti-platonism is true.
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • A Logical Journey: From Gödel to Philosophy.Hao Wang - 1996 - Bradford.
    Hao Wang was one of the few confidants of the great mathematician and logician Kurt Gödel. _A Logical Journey_ is a continuation of Wang's _Reflections on Gödel_ and also elaborates on discussions contained in _From Mathematics to Philosophy_. A decade in preparation, it contains important and unfamiliar insights into Gödel's views on a wide range of issues, from Platonism and the nature of logic, to minds and machines, the existence of God, and positivism and phenomenology. The impact of Gödel's theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • A Logical Journey. From Gödel to Philosophy.Hao Wang - 1998 - Philosophy 73 (285):495-504.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • (2 other versions)On the philosophical development of Kurt gödel.Mark van Atten & Juliette Kennedy - 2003 - Bulletin of Symbolic Logic 9 (4):425-476.
    It is by now well known that Gödel first advocated the philosophy of Leibniz and then, since 1959, that of Husserl. This raises three questions:1.How is this turn to Husserl to be interpreted? Is it a dismissal of the Leibnizian philosophy, or a different way to achieve similar goals?2.Why did Gödel turn specifically to the later Husserl's transcendental idealism?3.Is there any detectable influence from Husserl on Gödel's writings?Regarding the first question, Wang [96, p.165] reports that Gödel ‘[saw] in Husserl's work (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Between Vienna and Berlin: The Immediate Reception of Godel's Incompleteness Theorems.Paolo Mancosu - 1999 - History and Philosophy of Logic 20 (1):33-45.
    What were the earliest reactions to Gödel's incompleteness theorems? After a brief summary of previous work in this area I analyse, by means of unpublished archival material, the first reactions in Vienna and Berlin to Gödel's groundbreaking results. In particular, I look at how Carnap, Hempel, von Neumann, Kaufmann, and Chwistek, among others, dealt with the new results.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Platonism and Anti-Platonism in Mathematics. [REVIEW]Matthew McGrath - 2001 - Philosophy and Phenomenological Research 63 (1):239-242.
    Mark Balaguer has written a provocative and original book. The book is as ambitious as a work of philosophy of mathematics could be. It defends both of the dominant views concerning the ontology of mathematics, Platonism and Anti-Platonism, and then closes with an argument that there is no fact of the matter which is right.
    Download  
     
    Export citation  
     
    Bookmark   84 citations