Switch to: References

Citations of:

Platonism and anti-Platonism in mathematics

New York: Oxford University Press (1998)

Add citations

You must login to add citations.
  1. Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Five Kinds of Epistemic Arguments Against Robust Moral Realism.Joshua Schechter - 2023 - In Paul Bloomfield & David Copp (eds.), Oxford Handbook of Moral Realism. New York, NY: Oxford University Press. pp. 345-369.
    This chapter discusses epistemic objections to non-naturalist moral realism. The goal of the chapter is to determine which objections are pressing and which objections can safely be dismissed. The chapter examines five families of objections: (i) one involving necessary conditions on knowledge, (ii) one involving the idea that the causal history of our moral beliefs reflects the significant impact of irrelevant influences, (iii) one relying on the idea that moral truths do not play a role in explaining our moral beliefs, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pragmatic accounts of justification, epistemic analyticity, and other routes to easy knowledge of abstracta.Brett Topey - forthcoming - In Xavier de Donato-Rodríguez, José Falguera & Concha Martínez-Vidal (eds.), Deflationist Conceptions of Abstract Objects. Springer.
    One common attitude toward abstract objects is a kind of platonism: a view on which those objects are mind-independent and causally inert. But there's an epistemological problem here: given any naturalistically respectable understanding of how our minds work, we can't be in any sort of contact with mind-independent, causally inert objects. So platonists, in order to avoid skepticism, tend to endorse epistemological theories on which knowledge is easy, in the sense that it requires no such contact—appeals to Boghossian’s notion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Hybrid Theory of Ethical Thought and Discourse.Drew Johnson - 2022 - Dissertation, University of Connecticut
    What is it that we are doing when we make ethical claims and judgments, such as the claim that we morally ought to assist refugees? This dissertation introduces and defends a novel theory of ethical thought and discourse. I begin by identifying the surface features of ethical thought and discourse to be explained, including the realist and cognitivist (i.e. belief-like) appearance of ethical judgments, and the apparent close connection between making a sincere ethical judgment and being motivated to act on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to ground powers.David Builes - 2024 - Analysis 84 (2):231-238.
    According to the grounding theory of powers, fundamental physical properties should be thought of as qualities that ground dispositions. Although this view has recently been defended by many different philosophers, there is no consensus for how the view should be developed within a broader metaphysics of properties. Recently, Tugby has argued that the view should be developed in the context of a Platonic theory of properties, where properties are abstract universals. I will argue that the view should not be developed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Debunking Debunked? : Challenges, Prospects, and the Threat of Self-Defeat.Conrad Bakka - 2023 - Dissertation, Stockholm University
    Metaethical debunking arguments often conclude that no moral belief is epistemically justified. Early versions of such arguments largely relied on metaphors and analogies and left the epistemology of debunking underspecified. Debunkers have since come to take on substantial and broad-ranging epistemological commitments. The plausibility of metaethical debunking has thereby become entangled in thorny epistemological issues. In this thesis, I provide a critical yet sympathetic evaluation of the prospects and challenges facing such arguments in light of this development. In doing so, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Quinean Reformulation of Fregean Arguments.Nathaniel Gan - 2023 - Acta Analytica 38 (3):481-494.
    In ontological debates, realists typically argue for their view via one of two approaches. The _Quinean approach_ employs naturalistic arguments that say our scientific practices give us reason to affirm the existence of a kind of entity. The _Fregean approach_ employs linguistic arguments that say we should affirm the existence of a kind of entity because our discourse contains reference to those entities. These two approaches are often seen as distinct, with _indispensability arguments_ typically associated with the former, but not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Note on Consistency and Platonism.Alfredo Roque Freire & V. Alexis Peluce - forthcoming - In Alfredo Roque Freire & V. Alexis Peluce (eds.), 43rd International Wittgenstein Symposium proceedings.
    Is consistency the sort of thing that could provide a guide to mathematical ontology? If so, which notion of consistency suits this purpose? Mark Balaguer holds such a view in the context of platonism, the view that mathematical objects are non-causal, non-spatiotemporal, and non-mental. For the purposes of this paper, we will examine several notions of consistency with respect to how they can provide a platon-ist epistemology of mathematics. Only a Gödelian notion, we suggest, can provide a satisfactory guide to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Hyperintensional Two-Dimensionalist Solution to the Access Problem.David Elohim - manuscript
    I argue that the two-dimensional hyperintensions of epistemic topic-sensitive two-dimensional truthmaker semantics provide a compelling solution to the access problem. -/- I countenance an abstraction principle for two-dimensional hyperintensions based on Voevodsky's Univalence Axiom and function type equivalence in Homotopy Type Theory. The truth of my first-order abstraction principle for two-dimensional hyperintensions is grounded in its being possibly recursively enumerable i.e. Turing computable and the Turing machine being physically implementable. I apply, further, modal rationalism in modal epistemology to solve the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Pluralism and Higher‐Order Logic.Justin Clarke-Doane & William McCarthy - 2022 - Philosophical Perspectives 36 (1):31-58.
    In this article, we discuss a simple argument that modal metaphysics is misconceived, and responses to it. Unlike Quine's, this argument begins with the observation that there are different candidate interpretations of the predicate ‘could have been the case’. This is analogous to the observation that there are different candidate interpretations of the predicate ‘is a member of’. The argument then infers that the search for metaphysical necessities is misguided in much the way the ‘set-theoretic pluralist’ claims that the search (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics.Ulianov Montano - 2013 - Dordrecht, Netherland: Springer.
    This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain pieces of mathematics using words like beautiful, elegant, or even ugly. Such evaluations (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Du Châtelet’s Philosophy of Mathematics.Aaron Wells - forthcoming - In Fatema Amijee (ed.), The Bloomsbury Handbook of Du Châtelet. Bloomsbury.
    I begin by outlining Du Châtelet’s ontology of mathematical objects: she is an idealist, and mathematical objects are fictions dependent on acts of abstraction. Next, I consider how this idealism can be reconciled with her endorsement of necessary truths in mathematics, which are grounded in essences that we do not create. Finally, I discuss how mathematics and physics relate within Du Châtelet’s idealism. Because the primary objects of physics are partly grounded in the same kinds of acts as yield mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontology and Arbitrariness.David Builes - 2022 - Australasian Journal of Philosophy 100 (3):485-495.
    In many different ontological debates, anti-arbitrariness considerations push one towards two opposing extremes. For example, in debates about mereology, one may be pushed towards a maximal ontology (mereological universalism) or a minimal ontology (mereological nihilism), because any intermediate view seems objectionably arbitrary. However, it is usually thought that anti-arbitrariness considerations on their own cannot decide between these maximal or minimal views. I will argue that this is a mistake. Anti-arbitrariness arguments may be used to motivate a certain popular thesis in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Functional Approach to Ontology.Nathaniel Gan - 2021 - Metaphysica 22 (1):23-43.
    There are two ways of approaching an ontological debate: ontological realism recommends that metaphysicians seek to discover deep ontological facts of the matter, while ontological anti-realism denies that there are such facts; both views sometimes run into difficulties. This paper suggests an approach to ontology that begins with conceptual analysis and takes the results of that analysis as a guide for which metaontological view to hold. It is argued that in some cases, the functions for which we employ a part (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Methodology in the ontology of artworks: exploring hermeneutic fictionalism.Elisa Caldarola - 2020 - In Concha Martinez Vidal & José Luis Falguera Lopez (ed.), Abstract Objects: For and Against.
    There is growing debate about what is the correct methodology for research in the ontology of artworks. In the first part of this essay, I introduce my view: I argue that semantic descriptivism is a semantic approach that has an impact on meta-ontological views and can be linked with a hermeneutic fictionalist proposal on the meta-ontology of artworks such as works of music. In the second part, I offer a synthetic presentation of the four main positive meta-ontological views that have (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantifier Variance, Mathematicians’ Freedom and the Revenge of Quinean Indispensability Worries.Sharon Berry - 2022 - Erkenntnis 87 (5):2201-2218.
    Invoking a form of quantifier variance promises to let us explain mathematicians’ freedom to introduce new kinds of mathematical objects in a way that avoids some problems for standard platonist and nominalist views. In this paper I’ll note that, despite traditional associations between quantifier variance and Carnapian rejection of metaphysics, Siderian realists about metaphysics can naturally be quantifier variantists. Unfortunately a variant on the Quinean indispensability argument concerning grounding seems to pose a problem for philosophers who accept this hybrid. However (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Números naturales: distintas metodologías que convergen en el análisis de su naturaleza y de cómo los entendemos.Melisa Vivanco - 2020 - Critica 51 (153).
    José Ferreirós y Abel Lasalle Casanave, El árbol de los números: cognición, lógica y práctica matemática, Editorial Universidad de Sevilla, Sevilla, 2015, 256 pp.
    Download  
     
    Export citation  
     
    Bookmark  
  • Metaphysics as Essentially Imaginative and Aiming at Understanding.Michaela Markham McSweeney - 2023 - American Philosophical Quarterly 60 (1):83-97.
    I explore the view that metaphysics is essentially imaginative. I argue that the central goal of metaphysics on this view is understanding, not truth. Metaphysics-as-essentially-imaginative provides novel answers to challenges to both the value and epistemic status of metaphysics.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fundamentality physicalism.Gabriel Oak Rabin - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy (1):77-116.
    ABSTRACT This essay has three goals. The first is to introduce the notion of fundamentality and to argue that physicalism can usefully be conceived of as a thesis about fundamentality. The second is to argue for the advantages of fundamentality physicalism over modal formulations and that fundamentality physicalism is what many who endorse modal formulations of physicalism had in mind all along. Third, I describe what I take to be the main obstacle for a fundamentality-oriented formulation of physicalism: ‘the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical surrealism as an alternative to easy-road fictionalism.Kenneth Boyce - 2020 - Philosophical Studies 177 (10):2815-2835.
    Easy-road mathematical fictionalists grant for the sake of argument that quantification over mathematical entities is indispensable to some of our best scientific theories and explanations. Even so they maintain we can accept those theories and explanations, without believing their mathematical components, provided we believe the concrete world is intrinsically as it needs to be for those components to be true. Those I refer to as “mathematical surrealists” by contrast appeal to facts about the intrinsic character of the concrete world, not (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theories as recipes: third-order virtue and vice.Michaela Markham McSweeney - 2020 - Philosophical Studies 177 (2):391-411.
    A basic way of evaluating metaphysical theories is to ask whether they give satisfying answers to the questions they set out to resolve. I propose an account of “third-order” virtue that tells us what it takes for certain kinds of metaphysical theories to do so. We should think of these theories as recipes. I identify three good-making features of recipes and show that they translate to third-order theoretical virtues. I apply the view to two theories—mereological universalism and plenitudinous platonism—and draw (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstracta Are Causal.David Friedell - 2020 - Philosophia 48 (1):133-142.
    Many philosophers think all abstract objects are causally inert. Here, focusing on novels, I argue that some abstracta are causally efficacious. First, I defend a straightforward argument for this view. Second, I outline an account of object causation—an account of how objects cause effects. This account further supports the view that some abstracta are causally efficacious.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Contingentism in Metaphysics.Kristie Miller - 2010 - Philosophy Compass 5 (11):965-977.
    In a lot of domains in metaphysics the tacit assumption has been that whichever metaphysical principles turn out to be true, these will be necessarily true. Let us call necessitarianism about some domain the thesis that the right metaphysics of that domain is necessary. Necessitarianism has flourished. In the philosophy of maths we find it held that if mathematical objects exist, then they do of necessity. Mathematical Platonists affirm the necessary existence of mathematical objects (see for instance Hale and Wright (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Debunking, supervenience, and Hume’s Principle.Mary Leng - 2019 - Canadian Journal of Philosophy 49 (8):1083-1103.
    Debunking arguments against both moral and mathematical realism have been pressed, based on the claim that our moral and mathematical beliefs are insensitive to the moral/mathematical facts. In the mathematical case, I argue that the role of Hume’s Principle as a conceptual truth speaks against the debunkers’ claim that it is intelligible to imagine the facts about numbers being otherwise while our evolved responses remain the same. Analogously, I argue, the conceptual supervenience of the moral on the natural speaks presents (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relativity and the Causal Efficacy of Abstract Objects.Tim Juvshik - 2020 - American Philosophical Quarterly 57 (3):269-282.
    Abstract objects are standardly taken to be causally inert, however principled arguments for this claim are rarely given. As a result, a number of recent authors have claimed that abstract objects are causally efficacious. These authors take abstracta to be temporally located in order to enter into causal relations but lack a spatial location. In this paper, I argue that such a position is untenable by showing first that causation requires its relata to have a temporal location, but second, that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Objectivity and Evaluation.Justin Clarke-Doane - 2019 - In Christopher Cowie & Rach Cosker-Rowland (eds.), Companions in Guilt: Arguments in Metaethics. Routledge.
    I this article, I introduce the notion of pluralism about an area, and use it to argue that the questions at the center of our normative lives are not settled by the facts -- even the normative facts. One upshot of the discussion is that the concepts of realism and objectivity, which are widely identified, are actually in tension. Another is that the concept of objectivity, not realism, should take center stage.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Metaphysical and absolute possibility.Justin Clarke-Doane - 2019 - Synthese 198 (Suppl 8):1861-1872.
    It is widely alleged that metaphysical possibility is “absolute” possibility Conceivability and possibility, Clarendon, Oxford, 2002, p 16; Stalnaker, in: Stalnaker Ways a world might be: metaphysical and anti-metaphysical essays, Oxford University Press, Oxford, 2003, pp 201–215; Williamson in Can J Philos 46:453–492, 2016). Kripke calls metaphysical necessity “necessity in the highest degree”. Van Inwagen claims that if P is metaphysically possible, then it is possible “tout court. Possible simpliciter. Possible period…. possib without qualification.” And Stalnaker writes, “we can agree (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • A Critical Review of the Modern Mathematical Platonism.Hossein Bayat - 2018 - Journal of Philosophical Investigations at University of Tabriz 12 (23):1-19.
    Some mathematical philosophers believe that we can achieve a new and better version of mathematical Platonism, by eliminating defects of original Platonism. According to Brown's version of Platonism, that here we call it “Modern Platonism”, the nature of mathematics can be formulated in these seven theses: realism, abstraction, particularity, Intuitiveness, priority, fallibility, and extensibility. This paper criticizes and evaluates the New Platonism, according to two major criteria: the social acceptability, and the methodological acceptability. The social acceptability of a theory, according (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Sosein as Subject Matter.Matteo Plebani - 2018 - Australasian Journal of Logic 15 (2):77-94.
    Meinongians in general, and Routley in particular, subscribe to the principle of the independence of Sosein from Sein. In this paper, I put forward an interpretation of the independence principle that philosophers working outside the Meinongian tradition can accept. Drawing on recent work by Stephen Yablo and others on the notion of subject matter, I offer a new account of the notion of Sosein as a subject matter and argue that in some cases Sosein might be independent from Sein. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability, causation and explanation.Sorin Bangu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):219-232.
    When considering mathematical realism, some scientific realists reject it, and express sympathy for the opposite view, mathematical nominalism; moreover, many justify this option by invoking the causal inertness of mathematical objects. The main aim of this note is to show that the scientific realists’ endorsement of this causal mathematical nominalism is in tension with another position some of them also accept, the doctrine of methodological naturalism. By highlighting this conflict, I intend to tip the balance in favor of a rival (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Naturalistic Moral Realism, Moral Rationalism, and Non-Fundamental Epistemology.Tristram McPherson - 2018 - In Karen Jones & François Schroeter (eds.), The Many Moral Rationalisms. New York: Oxford Univerisity Press. pp. 187-209.
    This paper takes up an important epistemological challenge to the naturalistic moral realist: that her metaphysical commitments are difficult to square with a plausible rationalist view about the epistemology of morality. The paper begins by clarifying and generalizing this challenge. It then illustrates how the generalized challenge can be answered by a form of naturalistic moral realism that I dub joint-carving moral realism. Both my framing of this challenge and my answer advertise the methodological significance of non-fundamental epistemological theorizing, which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • VI—Nominalistic Adequacy.Jeffrey Ketland - 2011 - Proceedings of the Aristotelian Society 111 (2pt2):201-217.
    Instrumentalist nominalism responds to the indispensability arguments by rejecting the demand that successful mathematicized scientific theories be nominalized, and instead claiming merely that such theories are nominalistically adequate: the concreta behave ‘as if’ the theory is true. This article examines some definitions of the concept of nominalistic adequacy and concludes with some considerations against instrumentalist nominalism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Modal Objectivity.Justin Clarke-Doane - 2017 - Noûs 53 (2):266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The Reality of Field’s Epistemological Challenge to Platonism.David Liggins - 2018 - Erkenntnis 83 (5):1027-1031.
    In the introduction to his Realism, mathematics and modality, and in earlier papers included in that collection, Hartry Field offered an epistemological challenge to platonism in the philosophy of mathematics. Justin Clarke-Doane Truth, objects, infinity: New perspectives on the philosophy of Paul Benacerraf, 2016) argues that Field’s challenge is an illusion: it does not pose a genuine problem for platonism. My aim is to show that Clarke-Doane’s argument relies on a misunderstanding of Field’s challenge.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Modal Objectivity.Clarke-Doane Justin - 2017 - Noûs 53:266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations