Switch to: References

Citations of:

Platonism and anti-Platonism in mathematics

New York: Oxford University Press (1998)

Add citations

You must login to add citations.
  1. (1 other version)What is the Benacerraf Problem?Justin Clarke-Doane - 2017 - In Fabrice Pataut Jody Azzouni, Paul Benacerraf Justin Clarke-Doane, Jacques Dubucs Sébastien Gandon, Brice Halimi Jon Perez Laraudogoitia, Mary Leng Ana Leon-Mejia, Antonio Leon-Sanchez Marco Panza, Fabrice Pataut Philippe de Rouilhan & Andrea Sereni Stuart Shapiro (eds.), New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity (Fabrice Pataut, Editor). Springer.
    In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Go figure: A path through fictionalism.Stephen Yablo - 2001 - Midwest Studies in Philosophy 25 (1):72–102.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Metaphysical and absolute possibility.Justin Clarke-Doane - 2019 - Synthese 198 (Suppl 8):1861-1872.
    It is widely alleged that metaphysical possibility is “absolute” possibility Conceivability and possibility, Clarendon, Oxford, 2002, p 16; Stalnaker, in: Stalnaker Ways a world might be: metaphysical and anti-metaphysical essays, Oxford University Press, Oxford, 2003, pp 201–215; Williamson in Can J Philos 46:453–492, 2016). Kripke calls metaphysical necessity “necessity in the highest degree”. Van Inwagen claims that if P is metaphysically possible, then it is possible “tout court. Possible simpliciter. Possible period…. possib without qualification.” And Stalnaker writes, “we can agree (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Metaphysics as Essentially Imaginative and Aiming at Understanding.Michaela Markham McSweeney - 2023 - American Philosophical Quarterly 60 (1):83-97.
    I explore the view that metaphysics is essentially imaginative. I argue that the central goal of metaphysics on this view is understanding, not truth. Metaphysics-as-essentially-imaginative provides novel answers to challenges to both the value and epistemic status of metaphysics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Modal Objectivity.Justin Clarke-Doane - 2017 - Noûs 53 (2):266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Reliability Challenge and the Epistemology of Logic.Joshua Schechter - 2010 - Philosophical Perspectives 24 (1):437-464.
    We think of logic as objective. We also think that we are reliable about logic. These views jointly generate a puzzle: How is it that we are reliable about logic? How is it that our logical beliefs match an objective domain of logical fact? This is an instance of a more general challenge to explain our reliability about a priori domains. In this paper, I argue that the nature of this challenge has not been properly understood. I explicate the challenge (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • How to ground powers.David Builes - 2024 - Analysis 84 (2):231-238.
    According to the grounding theory of powers, fundamental physical properties should be thought of as qualities that ground dispositions. Although this view has recently been defended by many different philosophers, there is no consensus for how the view should be developed within a broader metaphysics of properties. Recently, Tugby has argued that the view should be developed in the context of a Platonic theory of properties, where properties are abstract universals. I will argue that the view should not be developed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstracta Are Causal.David Friedell - 2020 - Philosophia 48 (1):133-142.
    Many philosophers think all abstract objects are causally inert. Here, focusing on novels, I argue that some abstracta are causally efficacious. First, I defend a straightforward argument for this view. Second, I outline an account of object causation—an account of how objects cause effects. This account further supports the view that some abstracta are causally efficacious.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • (1 other version)Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Ontology and Arbitrariness.David Builes - 2022 - Australasian Journal of Philosophy 100 (3):485-495.
    In many different ontological debates, anti-arbitrariness considerations push one towards two opposing extremes. For example, in debates about mereology, one may be pushed towards a maximal ontology (mereological universalism) or a minimal ontology (mereological nihilism), because any intermediate view seems objectionably arbitrary. However, it is usually thought that anti-arbitrariness considerations on their own cannot decide between these maximal or minimal views. I will argue that this is a mistake. Anti-arbitrariness arguments may be used to motivate a certain popular thesis in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Relativity and the Causal Efficacy of Abstract Objects.Tim Juvshik - 2020 - American Philosophical Quarterly 57 (3):269-282.
    Abstract objects are standardly taken to be causally inert, however principled arguments for this claim are rarely given. As a result, a number of recent authors have claimed that abstract objects are causally efficacious. These authors take abstracta to be temporally located in order to enter into causal relations but lack a spatial location. In this paper, I argue that such a position is untenable by showing first that causation requires its relata to have a temporal location, but second, that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Epistemology versus Non-Causal Realism.Jared Warren - 2017 - Synthese 194 (5).
    This paper formulates a general epistemological argument against what I call non-causal realism, generalizing domain specific arguments by Benacerraf, Field, and others. First I lay out the background to the argument, making a number of distinctions that are sometimes missed in discussions of epistemological arguments against realism. Then I define the target of the argument—non-causal realism—and argue that any non-causal realist theory, no matter the subject matter, cannot be given a reasonable epistemology and so should be rejected. Finally I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Abstract Expressionism and the Communication Problem.David Liggins - 2014 - British Journal for the Philosophy of Science 65 (3):599-620.
    Some philosophers have recently suggested that the reason mathematics is useful in science is that it expands our expressive capacities. Of these philosophers, only Stephen Yablo has put forward a detailed account of how mathematics brings this advantage. In this article, I set out Yablo’s view and argue that it is implausible. Then, I introduce a simpler account and show it is a serious rival to Yablo’s. 1 Introduction2 Yablo’s Expressionism3 Psychological Objections to Yablo’s Expressionism4 Introducing Belief Expressionism5 Objections and (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Contingentism in Metaphysics.Kristie Miller - 2010 - Philosophy Compass 5 (11):965-977.
    In a lot of domains in metaphysics the tacit assumption has been that whichever metaphysical principles turn out to be true, these will be necessarily true. Let us call necessitarianism about some domain the thesis that the right metaphysics of that domain is necessary. Necessitarianism has flourished. In the philosophy of maths we find it held that if mathematical objects exist, then they do of necessity. Mathematical Platonists affirm the necessary existence of mathematical objects (see for instance Hale and Wright (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Pluralism and Higher‐Order Logic.Justin Clarke-Doane & William McCarthy - 2022 - Philosophical Perspectives 36 (1):31-58.
    In this article, we discuss a simple argument that modal metaphysics is misconceived, and responses to it. Unlike Quine's, this argument begins with the observation that there are different candidate interpretations of the predicate ‘could have been the case’. This is analogous to the observation that there are different candidate interpretations of the predicate ‘is a member of’. The argument then infers that the search for metaphysical necessities is misguided in much the way the ‘set-theoretic pluralist’ claims that the search (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Metaontological Minimalism.Øystein Linnebo - 2012 - Philosophy Compass 7 (2):139-151.
    Can there be objects that are ‘thin’ in the sense that very little is required for their existence? A number of philosophers have thought so. For instance, many Fregeans believe it suffices for the existence of directions that there be lines standing in the relation of parallelism; other philosophers believe it suffices for a mathematical theory to have a model that the theory be coherent. This article explains the appeal of thin objects, discusses the three most important strategies for articulating (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the concrete world (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Realism without parochialism.Phillip Bricker - 2020 - In Modal Matters: Essays in Metaphysics. Oxford, England: Oxford University Press. pp. 40-76.
    I am a realist of a metaphysical stripe. I believe in an immense realm of "modal" and "abstract" entities, of entities that are neither part of, nor stand in any causal relation to, the actual, concrete world. For starters: I believe in possible worlds and individuals; in propositions, properties, and relations (both abundantly and sparsely conceived); in mathematical objects and structures; and in sets (or classes) of whatever I believe in. Call these sorts of entity, and the reality they comprise, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Number words and reference to numbers.Katharina Felka - 2014 - Philosophical Studies 168 (1):261-282.
    A realist view of numbers often rests on the following thesis: statements like ‘The number of moons of Jupiter is four’ are identity statements in which the copula is flanked by singular terms whose semantic function consists in referring to a number (henceforth: Identity). On the basis of Identity the realists argue that the assertive use of such statements commits us to numbers. Recently, some anti-realists have disputed this argument. According to them, Identity is false, and, thus, we may deny (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Mathematics is not the only language in the book of nature.James Nguyen & Roman Frigg - 2017 - Synthese 198 (Suppl 24):1-22.
    How does mathematics apply to something non-mathematical? We distinguish between a general application problem and a special application problem. A critical examination of the answer that structural mapping accounts offer to the former problem leads us to identify a lacuna in these accounts: they have to presuppose that target systems are structured and yet leave this presupposition unexplained. We propose to fill this gap with an account that attributes structures to targets through structure generating descriptions. These descriptions are physical descriptions (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A new perspective on the problem of applying mathematics.Christopher Pincock - 2004 - Philosophia Mathematica 12 (2):135-161.
    This paper sets out a new framework for discussing a long-standing problem in the philosophy of mathematics, namely the connection between the physical world and a mathematical domain when the mathematics is applied in science. I argue that considering counterfactual situations raises some interesting challenges for some approaches to applications, and consider an approach that avoids these challenges.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fundamentality physicalism.Gabriel Oak Rabin - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy (1):77-116.
    ABSTRACT This essay has three goals. The first is to introduce the notion of fundamentality and to argue that physicalism can usefully be conceived of as a thesis about fundamentality. The second is to argue for the advantages of fundamentality physicalism over modal formulations and that fundamentality physicalism is what many who endorse modal formulations of physicalism had in mind all along. Third, I describe what I take to be the main obstacle for a fundamentality-oriented formulation of physicalism: ‘the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Weaseling and the Content of Science.David Liggins - 2012 - Mind 121 (484):997-1005.
    I defend Joseph Melia’s nominalist account of mathematics from an objection raised by Mark Colyvan.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Philosophical Renegades.Bryan Frances - 2013 - In David Christensen & Jennifer Lackey (eds.), The Epistemology of Disagreement: New Essays. Oxford: Oxford University Press. pp. 121-166.
    If you retain your belief upon learning that a large number and percentage of your recognized epistemic superiors disagree with you, then what happens to the epistemic status of your belief? I investigate that theoretical question as well has the applied case of philosophical disagreement—especially disagreement regarding purely philosophical error theories, theories that do not have much empirical support and that reject large swaths of our most commonsensical beliefs. I argue that even if all those error theories are false, either (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The miracle of applied mathematics.Mark Colyvan - 2001 - Synthese 127 (3):265-277.
    Mathematics has a great variety ofapplications in the physical sciences.This simple, undeniable fact, however,gives rise to an interestingphilosophical problem:why should physical scientistsfind that they are unable to evenstate their theories without theresources of abstract mathematicaltheories? Moreover, theformulation of physical theories inthe language of mathematicsoften leads to new physical predictionswhich were quite unexpected onpurely physical grounds. It is thought by somethat the puzzles the applications of mathematicspresent are artefacts of out-dated philosophical theories about thenature of mathematics. In this paper I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On what it takes for there to be no fact of the matter.Jody Azzouni & Otávio Bueno - 2008 - Noûs 42 (4):753-769.
    Philosophers are very fond of making non-factualist claims—claims to the effect that there is no fact of the matter as to whether something is the case. But can these claims be coherently stated in the context of classical logic? Some care is needed here, we argue, otherwise one ends up denying a tautology or embracing a contradiction. In the end, we think there are only two strategies available to someone who wants to be a non-factualist about something, and remain within (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Revolutionary Fictionalism: A Call to Arms.Mary Leng - 2005 - Philosophia Mathematica 13 (3):277-293.
    This paper responds to John Burgess's ‘Mathematics and _Bleak House_’. While Burgess's rejection of hermeneutic fictionalism is accepted, it is argued that his two main attacks on revolutionary fictionalism fail to meet their target. Firstly, ‘philosophical modesty’ should not prevent philosophers from questioning the truth of claims made within successful practices, provided that the utility of those practices as they stand can be explained. Secondly, Carnapian scepticism concerning the meaningfulness of _metaphysical_ existence claims has no force against a _naturalized_ version (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • What is Metaphysical Equivalence?Kristie Miller - 2005 - Philosophical Papers 34 (1):45-74.
    Abstract Theories are metaphysically equivalent just if there is no fact of the matter that could render one theory true and the other false. In this paper I argue that if we are judiciously to resolve disputes about whether theories are equivalent or not, we need to develop testable criteria that will give us epistemic access to the obtaining of the relation of metaphysical equivalence holding between those theories. I develop such ?diagnostic? criteria. I argue that correctly inter-translatable theories are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Heavy Duty Platonism.Robert Knowles - 2015 - Erkenntnis 80 (6):1255-1270.
    Heavy duty platonism is of great dialectical importance in the philosophy of mathematics. It is the view that physical magnitudes, such as mass and temperature, are cases of physical objects being related to numbers. Many theorists have assumed HDP’s falsity in order to reach their own conclusions, but they are only justified in doing so if there are good arguments against HDP. In this paper, I present all five arguments against HDP alluded to in the literature and show that they (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Anti‐Metaphysicalism, Necessity, and Temporal Ontology.Mark Balaguer - 2016 - Philosophy and Phenomenological Research 89 (1):145-167.
    This paper argues for a certain kind of anti-metaphysicalism about the temporal ontology debate, i.e., the debate between presentists and eternalists over the existence of past and future objects. Three different kinds of anti-metaphysicalism are defined—namely, non-factualism, physical-empiricism, and trivialism. The paper argues for the disjunction of these three views. It is then argued that trivialism is false, so that either non-factualism or physical-empiricism is true. Finally, the paper ends with a discussion of whether we should endorse non-factualism or physical-empiricism. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Reality of Field’s Epistemological Challenge to Platonism.David Liggins - 2018 - Erkenntnis 83 (5):1027-1031.
    In the introduction to his Realism, mathematics and modality, and in earlier papers included in that collection, Hartry Field offered an epistemological challenge to platonism in the philosophy of mathematics. Justin Clarke-Doane Truth, objects, infinity: New perspectives on the philosophy of Paul Benacerraf, 2016) argues that Field’s challenge is an illusion: it does not pose a genuine problem for platonism. My aim is to show that Clarke-Doane’s argument relies on a misunderstanding of Field’s challenge.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Story About Propositions.Bradley Armour-Garb & James A. Woodbridge - 2010 - Noûs 46 (4):635-674.
    It is our contention that an ontological commitment to propositions faces a number of problems; so many, in fact, that an attitude of realism towards propositions—understood the usual “platonistic” way, as a kind of mind- and language-independent abstract entity—is ultimately untenable. The particular worries about propositions that marshal parallel problems that Paul Benacerraf has raised for mathematical platonists. At the same time, the utility of “proposition-talk”—indeed, the apparent linguistic commitment evident in our use of 'that'-clauses (in offering explanations and making (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Indispensability and Explanation.Sorin Bangu - 2013 - British Journal for the Philosophy of Science 64 (2):255-277.
    The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematical Spandrels.Alan Baker - 2017 - Australasian Journal of Philosophy 95 (4):779-793.
    The aim of this paper is to open a new front in the debate between platonism and nominalism by arguing that the degree of explanatory entanglement of mathematics in science is much more extensive than has been hitherto acknowledged. Even standard examples, such as the prime life cycles of periodical cicadas, involve a penumbra of mathematical features whose presence can only be explained using relatively sophisticated mathematics. I introduce the term ‘mathematical spandrel’ to describe these penumbral properties, and focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Nominalism.Zoltan Szabo - 2003 - In Michael J. Loux & Dean W. Zimmerman (eds.), The Oxford handbook of metaphysics. New York: Oxford University Press.
    …entities? 2. How to be a nominalist 2.1. “Speak with the vulgar …” 2.2. “…think with the learned” 3. Arguments for nominalism 3.1. Intelligibility, physicalism, and economy 3.2. Causal..
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematical Contingentism.Kristie Miller - 2012 - Erkenntnis 77 (3):335-359.
    Platonists and nominalists disagree about whether mathematical objects exist. But they almost uniformly agree about one thing: whatever the status of the existence of mathematical objects, that status is modally necessary. Two notable dissenters from this orthodoxy are Hartry Field, who defends contingent nominalism, and Mark Colyvan, who defends contingent Platonism. The source of their dissent is their view that the indispensability argument provides our justification for believing in the existence, or not, of mathematical objects. This paper considers whether commitment (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Five Kinds of Epistemic Arguments Against Robust Moral Realism.Joshua Schechter - 2023 - In Paul Bloomfield & David Copp (eds.), Oxford Handbook of Moral Realism. New York, NY: Oxford University Press. pp. 345-369.
    This chapter discusses epistemic objections to non-naturalist moral realism. The goal of the chapter is to determine which objections are pressing and which objections can safely be dismissed. The chapter examines five families of objections: (i) one involving necessary conditions on knowledge, (ii) one involving the idea that the causal history of our moral beliefs reflects the significant impact of irrelevant influences, (iii) one relying on the idea that moral truths do not play a role in explaining our moral beliefs, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation