Switch to: References

Citations of:

A Logical Journey. From Gödel to Philosophy

Philosophy 73 (285):495-504 (1998)

Add citations

You must login to add citations.
  1. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is the Nature of Mathematical–Logical Objects?Stathis Livadas - 2017 - Axiomathes 27 (1):79-112.
    This article deals with a question of a most general, comprehensive and profound content as it is the nature of mathematical–logical objects insofar as these are considered objects of knowledge and more specifically objects of formal mathematical theories. As objects of formal theories they are dealt with in the sense they have acquired primarily from the beginnings of the systematic study of mathematical foundations in connection with logic dating from the works of G. Cantor and G. Frege in the last (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Two Selves: Their Metaphysical Commitments and Functional Independence.Stan Klein - 2014 - Oxford University Press.
    The Two Selves takes the position that the self is not a "thing" easily reduced to an object of scientific analysis. Rather, the self consists in a multiplicity of aspects, some of which have a neuro-cognitive basis (and thus are amenable to scientific inquiry) while other aspects are best construed as first-person subjectivity, lacking material instantiation. As a consequence of their potential immateriality, the subjective aspect of self cannot be taken as an object and therefore is not easily amenable to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A verisimilitudinarian analysis of the Linda paradox.Gustavo Cevolani, Vincenzo Crupi & Roberto Festa - 2012 - VII Conference of the Spanish Society for Logic, Methodology and Philosphy of Science.
    The Linda paradox is a key topic in current debates on the rationality of human reasoning and its limitations. We present a novel analysis of this paradox, based on the notion of verisimilitude as studied in the philosophy of science. The comparison with an alternative analysis based on probabilistic confirmation suggests how to overcome some problems of our account by introducing an adequately defined notion of verisimilitudinarian confirmation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Monads and Mathematics: Gödel and Husserl.Richard Tieszen - 2012 - Axiomathes 22 (1):31-52.
    In 1928 Edmund Husserl wrote that “The ideal of the future is essentially that of phenomenologically based (“philosophical”) sciences, in unitary relation to an absolute theory of monads” (“Phenomenology”, Encyclopedia Britannica draft) There are references to phenomenological monadology in various writings of Husserl. Kurt Gödel began to study Husserl’s work in 1959. On the basis of his later discussions with Gödel, Hao Wang tells us that “Gödel’s own main aim in philosophy was to develop metaphysics—specifically, something like the monadology of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Chateaubriand’s Realist Conception of Logic.Frank Thomas Sautter - 2010 - Axiomathes 20 (2-3):357-364.
    I present the realist conception of logic supported by Oswaldo Chateaubriand which integrates ontological and epistemological aspects, opposing it to mathematical and linguistic conceptions. I give special attention to the peculiarities of his hierarchy of types in which some properties accumulate and others have a multiple degree. I explain such deviations of the traditional conception, showing the underlying purpose in each of these peculiarities. I compare the ideas of Chateaubriand to the similar ideas of Frege, Tarski and Gödel. I suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Carnap, completeness, and categoricity:The gabelbarkeitssatz OF 1928. [REVIEW]S. Awodey & A. W. Carus - 2001 - Erkenntnis 54 (2):145-172.
    In 1929 Carnap gave a paper in Prague on Investigations in General Axiomatics; a briefsummary was published soon after. Its subject lookssomething like early model theory, and the mainresult, called the Gabelbarkeitssatz, appears toclaim that a consistent set of axioms is complete justif it is categorical. This of course casts doubt onthe entire project. Though there is no furthermention of this theorem in Carnap''s publishedwritings, his Nachlass includes a largetypescript on the subject, Investigations inGeneral Axiomatics. We examine this work here,showing (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (2 other versions)On the philosophical development of Kurt gödel.Mark van Atten & Juliette Kennedy - 2003 - Bulletin of Symbolic Logic 9 (4):425-476.
    It is by now well known that Gödel first advocated the philosophy of Leibniz and then, since 1959, that of Husserl. This raises three questions:1.How is this turn to Husserl to be interpreted? Is it a dismissal of the Leibnizian philosophy, or a different way to achieve similar goals?2.Why did Gödel turn specifically to the later Husserl's transcendental idealism?3.Is there any detectable influence from Husserl on Gödel's writings?Regarding the first question, Wang [96, p.165] reports that Gödel ‘[saw] in Husserl's work (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Gödel's program revisited part I: The turn to phenomenology.Kai Hauser - 2006 - Bulletin of Symbolic Logic 12 (4):529-590.
    Convinced that the classically undecidable problems of mathematics possess determinate truth values, Gödel issued a programmatic call to search for new axioms for their solution. The platonism underlying his belief in the determinateness of those questions in combination with his conception of intuition as a kind of perception have struck many of his readers as highly problematic. Following Gödel's own suggestion, this article explores ideas from phenomenology to specify a meaning for his mathematical realism that allows for a defensible epistemology.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mereological Models of Spacetime Emergence.Jessica Pohlmann - 2024 - Philosophy Compass 19 (7):e13003.
    Recent work in quantum gravity has prompted a re-evaluation of the fundamental nature of spacetime. Spacetime is potentially emergent from non-spatiotemporal entities posited by a theory of quantum gravity. Recent efforts have sought to interpret the relationship between spacetime and the fundamental entities through a mereological framework. These frameworks propose that spacetime can be conceived as either having non-spatiotemporal entities as its constituents or being a constituent part of a non-spatiotemporal structure. I present a roadmap for those interested in exploring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • John von Neumann’s Discovery of the 2nd Incompleteness Theorem.Giambattista Formica - 2022 - History and Philosophy of Logic 44 (1):66-90.
    Shortly after Kurt Gödel had announced an early version of the 1st incompleteness theorem, John von Neumann wrote a letter to inform him of a remarkable discovery, i.e. that the consistency of a formal system containing arithmetic is unprovable, now known as the 2nd incompleteness theorem. Although today von Neumann’s proof of the theorem is considered lost, recent literature has explored many of the issues surrounding his discovery. Yet, one question still awaits a satisfactory answer: how did von Neumann achieve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Filippos A. Papagiannopoulos - 2018 - Dissertation, University of Western Ontario
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Goedel's Other Legacy And The Imperative Of A Self­reflective Science.Vasileios Basios - 2006 - Goedel Society Collegium Logicum 9:pg. 1-5.
    The Goedelian approach is discussed as a prime example of a science towards the origins. While mere self­referential objectification locks in to its own by­products, self­releasing objectification informs the formation of objects at hand and their different levels of interconnection. Guided by the spirit of Goedel's work a self­reflective science can open the road where old tenets see only blocked paths. “This is, as it were, an analysis of the analysis itself, but if that is done it forms the fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non‐Classical Knowledge.Ethan Jerzak - 2017 - Philosophy and Phenomenological Research 98 (1):190-220.
    The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory validating (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Note on Absolute Provability and Cantorian Comprehension.Holger A. Leuz - manuscript
    We will explicate Cantor’s principle of set existence using the Gödelian intensional notion of absolute provability and John Burgess’ plural logical concept of set formation. From this Cantorian Comprehension principle we will derive a conditional result about the question whether there are any absolutely unprovable mathematical truths. Finally, we will discuss the philosophical significance of the conditional result.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):253-281.
    The view that mathematics deals with ideal objects to which we have epistemic access by a kind of perception has troubled many thinkers. Using ideas from Husserl’s phenomenology, I will take a different look at these matters. The upshot of this approach is that there are non-material objects and that they can be recognized in a process very closely related to sense perception. In fact, the perception of physical objects may be regarded as a special case of this more universal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel, Carnap and the Fregean heritage.Gabriella Crocco - 2003 - Synthese 137 (1-2):21 - 41.
    Thorough a detailed analysis of version III of Gödel's Is mathematics syntax of language?, we propose a new interpretation of Gödel's criticism against the conventionalist point of view in mathematics. When one reads carefully Gödel's text, it brings out that, contrary to the opinion of some commentators, Gödel did not overlook the novelty of Carnap's solution, and did not criticise him from an old-fashioned conception of science. The general aim of our analysis is to restate the Carnap/Gödel debate in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What did gödel believe and when did he believe it?Martin Davis - 2005 - Bulletin of Symbolic Logic 11 (2):194-206.
    Gödel has emphasized the important role that his philosophical views had played in his discoveries. Thus, in a letter to Hao Wang of December 7, 1967, explaining why Skolem and others had not obtained the completeness theorem for predicate calculus, Gödel wrote:This blindness of logicians is indeed surprising. But I think the explanation is not hard to find. It lies in a widespread lack, at that time, of the required epistemological attitude toward metamathematics and toward non-finitary reasoning. …I may add (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The approach to AI emergence from the standpoint of future contingents.Ignacy Sitnicki - 2024 - AI and Society 39 (5):2385-2387.
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Intuitionistic Arithmetic?V. Alexis Peluce - 2024 - Erkenntnis 89 (8):3351-3376.
    L.E.J. Brouwer famously took the subject’s intuition of time to be foundational and from there ventured to build up mathematics. Despite being largely critical of formal methods, Brouwer valued axiomatic systems for their use in both communication and memory. Through the Dutch Mathematical Society, Gerrit Mannoury posed a challenge in 1927 to provide an axiomatization of intuitionistic arithmetic. Arend Heyting’s 1928 axiomatization was chosen as the winner and has since enjoyed the status of being the _de facto_ formalization of intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Jan von Plato.* Can Mathematics be Proved Consistent?John W. Dawson - 2023 - Philosophia Mathematica 31 (1):104-111.
    The papers of Kurt Gödel were donated to the Institute for Advanced Study by his widow Adele shortly after his death in 1978. They were catalogued by the review.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödelian platonism and mathematical intuition.Wesley Wrigley - 2021 - European Journal of Philosophy 30 (2):578-600.
    European Journal of Philosophy, Volume 30, Issue 2, Page 578-600, June 2022.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel, percepção racional e compreensão de conceitos.Sérgio Schultz - 2014 - Revista Latinoamericana de Filosofia 40 (1):47-65.
    Nosso objetivo neste artigo é o de lançar luz sobre alguns aspectos das concepções de Gödel acerca da percepção de conceitos. Começamos investigando a natureza e o papel da analogia entre percepção sensível e percepção de conceitos. A seguir, examinamos as conexões entre percepção de conceitos, razão e compreensão, tentando mostrar que a percepção de conceitos é compreensão de conceitos. Por fim, examinamos aqueles aspectos da concepção de Gödel em que a percepção de conceitos de fato se aproxima perigosamente da (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic is not Logic.Jean-Ives Béziau - 2010 - Abstracta 6 (1):73-102.
    In this paper we discuss the difference between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Gödel's path from the incompleteness theorems (1931) to phenomenology (1961).Richard Tieszen - 1998 - Bulletin of Symbolic Logic 4 (2):181-203.
    In a lecture manuscript written around 1961, Gödel describes a philosophical path from the incompleteness theorems to Husserl's phenomenology. It is known that Gödel began to study Husserl's work in 1959 and that he continued to do so for many years. During the 1960s, for example, he recommended the sixth investigation of Husserl's Logical Investigations to several logicians for its treatment of categorial intuition. While Gödel may not have been satisfied with what he was able to obtain from philosophy and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Plausible Impact of Phenomenology on Gödel's Thoughts.Stathis Livadas - 2019 - Theoria 85 (2):145-170.
    It is well known that in his later years Gödel turned to a systematic reading of phenomenology, whose founder, Edmund Husserl, was highly esteem as a philosopher who sought to elevate philosophy to the standards of a rigorous science. For reasons purportedly related to his earlier attraction to Leibnizian monadology, Gödel was particularly interested in Husserl's transcendental phenomenology and the way it may shape the discussion on the nature of mathematical‐logical objects and the meaning and internal coherence of primitive terms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why AI shall emerge in the one of possible worlds?Ignacy Sitnicki - 2019 - AI and Society 34 (2):365-371.
    The aim of this paper is to present some philosophical considerations about the supposed AI emergence in the future. However, the predicted timeline of this process is uncertain. To avoid any kind of speculations on the proposed analysis from a scientific point of view, a metaphysical approach is undertaken as a modal context of the discussion. I argue that modal claim about possible AI emergence at a certain point of time in the future is justified from a temporal perspective. Therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Cantor's continuum problem inherently vague?Kai Hauser - 2002 - Philosophia Mathematica 10 (3):257-285.
    I examine various claims to the effect that Cantor's Continuum Hypothesis and other problems of higher set theory are ill-posed questions. The analysis takes into account the viability of the underlying philosophical views and recent mathematical developments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perception, Intuition, and Reliability.Kai Hauser & Tahsİn Öner - 2018 - Theoria 84 (1):23-59.
    The question of how we can know anything about ideal entities to which we do not have access through our senses has been a major concern in the philosophical tradition since Plato's Phaedo. This article focuses on the paradigmatic case of mathematical knowledge. Following a suggestion by Gödel, we employ concepts and ideas from Husserlian phenomenology to argue that mathematical objects – and ideal entities in general – are recognized in a process very closely related to ordinary perception. Our analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Richard Tieszen. After Gödel. Platonism and Rationalism in Mathematics and Logic.Dagfinn Føllesdal - 2016 - Philosophia Mathematica 24 (3):405-421.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Algorithms, Effective Procedures, and Their Definitions.Philippos Papayannopoulos - 2023 - Philosophia Mathematica 31 (3):291-329.
    I examine the classical idea of ‘algorithm’ as a sequential, step-by-step, deterministic procedure (i.e., the idea of ‘algorithm’ that was already in use by the 1930s), with respect to three themes, its relation to the notion of an ‘effective procedure’, its different roles and uses in logic, computer science, and mathematics (focused on numerical analysis), and its different formal definitions proposed by practitioners in these areas. I argue that ‘algorithm’ has been conceptualized and used in contrasting ways in the above (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ‘Qinghua School of Logic’: Mathematical Logic at Qinghua University in Peking, 1926–1945.Jan Vrhovski - 2021 - History and Philosophy of Logic 42 (3):247-261.
    Mathematical logic was first introduced to China in early 1920s. Although, the process of introduction was facilitated by the lectures of Bertrand Russel at Peking University in 1921 and continued by China’s most passionate adherents of Russell’s philosophy, the establishment of mathematical logic as an academic discipline occurred only in late 1920s, in the framework of a recently reorganised Qinghua University in Peking. The main aim of this paper is to shed some light on the process of establishment of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the mathematical nature of logic, featuring P. Bernays and K. Gödel.Oran Magal - unknown
    The paper examines the interrelationship between mathematics and logic, arguing that a central characteristic of each has an essential role within the other. The first part is a reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic are based on different directions of abstraction from content, and that mathematics, at its core it is a study of formal structures. The notion of a study of structure is clarified by the examples of Hilbert’s work on the axiomatization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Disjunctive Argument†.Wesley Wrigley - 2022 - Philosophia Mathematica 30 (3):306-342.
    Gödel argued that the incompleteness theorems entail that the mind is not a machine, or that certain arithmetical propositions are absolutely undecidable. His view was that the mind is not a machine, and that no arithmetical propositions are absolutely undecidable. I argue that his position presupposes that the idealized mathematician has an ability which I call the recursive-ordinal recognition ability. I show that we have this ability if, and only if, there are no absolutely undecidable arithmetical propositions. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel and the language of mathematics.Jovana Kostić - 2015 - Belgrade Philosophical Annual 28 (28):45-68.
    The aim of this paper is to challenge Hao Wang's presentation of Gödel's views on the language of mathematics. Hao Wang claimed that the language of mathematics is for Gödel nothing but a sensory tool that helps humans to focus their attention on some abstract objects. According to an alternative interpretation presented here, Gödel believed that the language of mathematics has an important role in acquiring knowledge of the abstract mathematical world. One possible explanation of that role is proposed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Juliette Kennedy.* Gödel, Tarski and the Lure of Natural Language: Logical Entanglement, Formalism Freeness.Penelope J. Maddy - 2021 - Philosophia Mathematica 29 (3):428-438.
    Juliette Kennedy’s new book brims with intriguing ideas. I don’t understand all of them, and I’m not convinced that the ones I do understand all fit together, b.
    Download  
     
    Export citation  
     
    Bookmark  
  • Phenomenological Ideas in the Philosophy of Mathematics. From Husserl to Gödel.Roman Murawski Thomas Bedürftig - 2018 - Studia Semiotyczne 32 (2):33-50.
    The paper is devoted to phenomenological ideas in conceptions of modern philosophy of mathematics. Views of Husserl, Weyl, Becker andGödel will be discussed and analysed. The aim of the paper is to show the influence of phenomenological ideas on the philosophical conceptions concerning mathematics. We shall start by indicating the attachment of Edmund Husserl to mathematics and by presenting the main points of his philosophy of mathematics. Next, works of two philosophers who attempted to apply Husserl’s phenomenological ideas to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dallas Willard’s Contribution to Phenomenology.Burt C. Hopkins - 2019 - Husserl Studies 35 (2):117-130.
    Dallas Willard’s contribution to phenomenology is presented in terms of his articles on, and translations into English of, Edmund Husserl’s early philosophical writings, which single-handedly prevented them from falling into oblivion, both literally and philosophically. Willard’s account of Husserl’s “negative critique” of formalized logic in those writings, and argument for its contemporary relevance, is presented and largely endorsed.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proving that the Mind Is Not a Machine?Johannes Stern - 2018 - Thought: A Journal of Philosophy 7 (2):81-90.
    This piece continues the tradition of arguments by John Lucas, Roger Penrose and others to the effect that the human mind is not a machine. Kurt Gödel thought that the intensional paradoxes stand in the way of proving that the mind is not a machine. According to Gödel, a successful proof that the mind is not a machine would require a solution to the intensional paradoxes. We provide what might seem to be a partial vindication of Gödel and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel's Introduction to Logic in 1939.P. Cassou-Nogues - 2009 - History and Philosophy of Logic 30 (1):69-90.
    This article presents three extracts from the introductory course in mathematical logic that Gödel gave at the University of Notre Dame in 1939. The lectures include a few digressions, which give insight into Gödel's views on logic prior to his philosophical papers of the 1940s. The first extract is Gödel's first lecture. It gives the flavour of Gödel's leisurely style in this course. It also includes a curious definition of logic and a discussion of implication in logic and natural language. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On causality as the fundamental concept of Gödel’s philosophy.Srećko Kovač - 2020 - Synthese 197 (4):1803-1838.
    This paper proposes a possible reconstruction and philosophical-logical clarification of Gödel's idea of causality as the philosophical fundamental concept. The results are based on Gödel's published and non-published texts (including Max Phil notebooks), and are established on the ground of interconnections of Gödel's dispersed remarks on causality, as well as on the ground of his general philosophical views. The paper is logically informal but is connected with already achieved results in the formalization of a causal account of Gödel's onto-theological theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Preface and introduction.A. Chakrabarty - 1994 - In A. Chakrabarti & B. K. Matilal (eds.), Knowing from Words. Kluwer Academic Publishers. pp. 5-9.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel and set theory.Akihiro Kanamori - 2007 - Bulletin of Symbolic Logic 13 (2):153-188.
    Kurt Gödel with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice and the Continuum Hypothesis. More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations